435 research outputs found

    A comparison of seagrass communities at varying proximity to a low-density mussel-line aquaculture in King George Sound, Western Australia

    Get PDF
    Increasingly mussel-line aquaculture is recognised as a potential threat to seagrass. Sites suitable for mussel-line aquaculture are often in sheltered waters containing seagrass. Despite this; few studies have examined the risk of mussel-line aquaculture to seagrass ecosystems. The objective of this study is to determine how low-density, mussel-line aquaculture might influence the underlying seagrass ecosystem

    The sub-millimetre evolution of V4334 Sgr (Sakurai's Object)

    Full text link
    We report the results of monitoring of V4334 Sgr (Sakurai's Object) at 450 microns and 850 microns with SCUBA on the James Clerk Maxwell Telescope. The flux density at both wavelengths has increased dramatically since 2001, and is consistent with continued cooling of the dust shell in which Sakurai's Object is still enshrouded, and which still dominates the near-infrared emission. Assuming that the dust shell is optically thin at sub-millimetre wavelengths and optically thick in the near-infrared, the sub-millimetre data imply a mass-loss rate during 2003 of ~3.4(+/0.2)E-5 for a gas-to-dust ratio of 75. This is consistent with the evidence from 1-5micron observations that the mass-loss is steadily increasing.Comment: 5 pages, 4 eps figures, accepted for publication in MNRA

    Sakurai's Object: characterizing the near-infrared CO ejecta between 2003 and 2007

    Get PDF
    We present observations of Sakurai's Object obtained at 1–5 ÎŒm between 2003 and 2007. By fitting a radiative transfer model to an echelle spectrum of CO fundamental absorption features around 4.7 ÎŒm, we determine the excitation conditions in the line-forming region. We find 12C/13C = 3.5+2.0−1.5, consistent with CO originating in ejecta processed by the very late thermal pulse, rather than in the pre-existing planetary nebula. We demonstrate the existence of 2.2 × 10−6≀MCO≀ 2.7 × 10−6 M⊙ of CO ejecta outside the dust, forming a high-velocity wind of 500 ± 80 km s−1. We find evidence for significant weakening of the CO band and cooling of the dust around the central star between 2003 and 2005. The gas and dust temperatures are implausibly high for stellar radiation to be the sole contributor

    The onset of photoionization in Sakurai's Object (V4334 Sgr)

    Full text link
    We investigate the reheating of the very late thermal pulse (VLTP) object V4334 Sgr (Sakurai's Object) using radio observations from the Very Large Array, and optical spectra obtained with the Very Large Telescope. We find a sudden rise of the radio flux at 5 and 8 GHz - from <= 90 micro-Jy and 80 +/- 30 micro-Jy in February 2005 to 320 micro-Jy and 280 micro-Jy in June 2006. Optical line emission is also evolving, but the emission lines are fading. The optical line emission and early radio flux are attributed to a fast shock (and not photoionization as was reported earlier) which occurred around 1998. The fading is due to post-shock cooling and recombination. The recent rapid increase in radio flux is evidence for the onset of photoionization of carbon starting around 2005. The current results indicate an increase in the stellar temperature to 12 kK in 2006. The mass ejected in the VLTP eruption is M_ej >= 1e-4 Msol, but could be as high as 1e-2 Msol, depending mainly on the distance and the clumping factor of the outflow. We derive a distance between 1.8 and 5 kpc. A high mass loss could expose the helium layer and yield abundances compatible with those of [WC] and PG1159 stars.Comment: 4 pages, 2 figures; accepted for publication in A&A letter

    The symbiotic star CH Cygni. III. A precessing radio jet

    Get PDF
    VLA, MERLIN and Hubble Space Telescope imaging observations of the extended regions of the symbiotic system CH Cygni are analysed. These extensions are evidence of a strong collimation mechanism, probably an accretion disk surrounding the hot component of the system. Over 16 years (between 1985 and 2001) the general trend is that these jets are seen to precess. Fitting a simple ballistic model of matter ejection to the geometry of the extended regions suggests a period of 6520 +/- 150 days, with a precession cone opening angle of 35 +/- 1 degrees. This period is of the same order as that proposed for the orbital period of the outer giant in the system, suggesting a possible link between the two. Anomalous knots in the emission, not explained by the simple model, are believed to be the result of older, slower moving ejecta, or possibly jet material that has become disrupted through sideways interaction with the surrounding medium.Comment: 9 pages, 4 figure

    Modelling and Dynamic Response of a Damper with Relief Valve

    Get PDF

    A dense disk of dust around the born-again Sakurai's object

    Get PDF
    In 1996, Sakurai's object (V4334 Sgr) suddenly brightened in the centre of a faint Planetary Nebula (PN). This very rare event was interpreted as the reignition of a hot white dwarf that caused a rapid evolution back to the cool giant phase. From 1998 on, a copious amount of dust has formed continuously, screening out the star which has remained embedded in this expanding high optical depth envelope. The new observations, reported here, are used to study the morphology of the circumstellar dust in order to investigate the hypothesis that Sakurai's Object is surrounded by a thick spherical envelope of dust. We have obtained unprecedented, high-angular resolution spectro-interferometric observations, taken with the mid-IR interferometer MIDI/VLTI, which resolve the dust envelope of Sakurai's object. We report the discovery of a unexpectedly compact (30 x 40 milliarcsec, 105 x 140 AU assuming a distance of 3.5 kpc), highly inclined, dust disk. We used Monte Carlo radiative-transfer simulations of a stratified disk to constrain its geometric and physical parameters, although such a model is only a rough approximation of the rapidly evolving dust structure. Even though the fits are not fully satisfactory, some useful and robust constraints can be inferred. The disk inclination is estimated to be 75+/-3 degree with a large scale height of 47+/-7 AU. The dust mass of the disk is estimated to be 6 10^{-5} solar mass. The major axis of the disk (132+/-3 degree) is aligned with an asymmetry seen in the old PN that was re-investigated as part of this study. This implies that the mechanism responsible for shaping the dust envelope surrounding Sakurai's object was already at work when the old PN formed.Comment: A&A Letter, accepte
    • 

    corecore