66 research outputs found

    The Topical Ocular Delivery of Rapamycin to Posterior Eye Tissues and the Suppression of Retinal Inflammatory Disease

    Get PDF
    Treatment of posterior eye diseases with intravitreal injections of drugs, while effective, is invasive and associated with side effects such as retinal detachment and endophthalmitis. In this work, we have formulated a model compound, rapamycin (RAP), in nanoparticle-based eye drops and evaluated the delivery of RAP to the posterior eye tissues in a healthy rabbit. We have also studied the formulation in experimental autoimmune uveitis (EAU) mouse model with retinal inflammation. Aqueous RAP eye drops were prepared using N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (Molecular Envelope Technology - MET) containing 0.23 ± 0.001% w/v RAP with viscosity, osmolarity, and pH within the ocular comfort range, and the formulation (MET-RAP) was stable in terms of drug content at both refrigeration and room temperature for one month. The MET-RAP eye drops delivered RAP to the choroid-retina with a Cmax of 145 ± 49 ng/g (tmax = 1 hour). The topical application of the MET-RAP eye drops to the EAU mouse model resulted in significant disease suppression compared to controls, with activity similar to dexamethasone eye drops. The MET-RAP eye drops also resulted in a reduction of RORγt and an increase in both Foxp3 expression and IL-10 secretion, indicating a mechanism involving the inhibition of Th17 cells and the up-regulation of T-reg cells. The MET-RAP formulation delivers RAP to the posterior eye segments, and the formulation is active in EAU

    Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities

    Get PDF
    In this paper, the multi-product facility location problem in a two-stage supply chain is investigated. In this problem, the locations of depots (distribution centres) need to be determined along with their corresponding capacities. Moreover, the product flows from the plants to depots and onto customers must also be optimised. Here, plants have a production limit whereas potential depots have several possible capacity levels to choose from, which are defined as multilevel capacities. Plants must serve customer demands via depots. Two integer linear programming (ILP) models are introduced to solve the problem in order to minimise the fixed costs of opening depots and transportation costs. In the first model, the depot capacity is based on the maximum number of each product that can be stored whereas in the second one, the capacity is determined by the size (volume) of the depot. For large problems, the models are very difficult to solve using an exact method. Therefore, a matheuristic approach based on an aggregation approach and an exact method (ILP) is proposed in order to solve such problems. The methods are assessed using randomly generated data sets and existing data sets taken from the literature. The solutions obtained from the computational study confirm the effectiveness of the proposed matheuristic approach which outperforms the exact method. In addition, a case study arising from the wind energy sector in the UK is presented

    An evaluation of three DoE-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network

    Get PDF
    This article evaluates the efficiency of three meta-heuristic optimiser (viz. MOGA-II, MOPSO and NSGA-II)-based solution methods for designing a sustainable three-echelon distribution network. The distribution network employs a bi-objective location-routing model. Due to the mathematically NP-hard nature of the model a multi-disciplinary optimisation commercial platform, modeFRONTIER®, is adopted to utilise the solution methods. The proposed Design of Experiment (DoE)-guided solution methods are of two phased that solve the NP-hard model to attain minimal total costs and total CO2 emission from transportation. Convergence of the optimisers are tested and compared. Ranking of the realistic results are examined using Pareto frontiers and the Technique for Order Preference by Similarity to Ideal Solution approach, followed by determination of the optimal transportation routes. A case of an Irish dairy processing industry’s three-echelon logistics network is considered to validate the solution methods. The results obtained through the proposed methods provide information on open/closed distribution centres (DCs), vehicle routing patterns connecting plants to DCs, open DCs to retailers and retailers to retailers, and number of trucks required in each route to transport the products. It is found that the DoE-guided NSGA-II optimiser based solution is more efficient when compared with the DoE-guided MOGA-II and MOPSO optimiser based solution methods in solving the bi-objective NP-hard three-echelon sustainable model. This efficient solution method enable managers to structure the physical distribution network on the demand side of a logistics network, minimising total cost and total CO2 emission from transportation while satisfying all operational constraints

    Post-translational regulation contributes to the loss of LKB1 expression through SIRT1 deacetylase in osteosarcomas

    Get PDF
    background: The most prevalent form of bone cancer is osteosarcoma (OS), which is associated with poor prognosis in case of metastases formation. Mice harbouring liver kinase B1 (LKB1+/−) develop osteoblastoma-like tumours. Therefore, we asked whether loss of LKB1 gene has a role in the pathogenesis of human OS. methods: Osteosarcomas (n=259) were screened for LKB1 and sirtuin 1 (SIRT1) protein expression using immunohistochemistry and western blot. Those cases were also screened for LKB1 genetic alterations by next-generation sequencing, Sanger sequencing, restriction fragment length polymorphism and fluorescence in situ hybridisation approaches. We studied LKB1 protein degradation through SIRT1 expression. MicroRNA expression investigations were also conducted to identify the microRNAs involved in the SIRT1/LKB1 pathway. results: Forty-one per cent (106 out of 259) OS had lost LKB1 protein expression with no evident genetic anomalies. We obtained evidence that SIRT1 impairs LKB1 protein stability, and that SIRT1 depletion leads to accumulation of LKB1 in OS cell lines resulting in growth arrest. Further investigations revealed the role of miR-204 in the regulation of SIRT1 expression, which impairs LKB1 stability. conclusions: We demonstrated the involvement of sequential regulation of miR-204/SIRT1/LKB1 in OS cases and showed a mechanism for the loss of expression of LKB1 tumour suppressor in this malignancy

    Paxillin Mediates Sensing of Physical Cues and Regulates Directional Cell Motility by Controlling Lamellipodia Positioning

    Get PDF
    Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5–10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax−/− and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax−/− cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax−/− and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices

    Research trends in combinatorial optimization

    Get PDF
    Acknowledgments This work has been partially funded by the Spanish Ministry of Science, Innovation, and Universities through the project COGDRIVE (DPI2017-86915-C3-3-R). In this context, we would also like to thank the Karlsruhe Institute of Technology. Open access funding enabled and organized by Projekt DEAL.Peer reviewedPublisher PD

    Green hybrid fleets using electric vehicles:solving the heterogeneous vehicle routing problem with multiple driving ranges and loading capacities

    Get PDF
    The introduction of Electric Vehicles (EVs) in modern fleets facilitates green road transportation. However, the driving ranges of EVs are limited by the duration of their batteries, which arise new operational challenges. Hybrid fleets of gas and EVs might be heterogeneous both in loading capacities as well as in driving-range capabilities,whichmakes the design of efficient routing plans a difficult task. In this paper, we propose a newMulti-Round IteratedGreedy (MRIG) metaheuristic to solve the Heterogeneous Vehicle Routing Problem with Multiple Driving ranges and loading capacities (HeVRPMD). MRIG uses a successive approximations method to offer the decision maker a set of alternative fleet configurations,with different distance-based costs and green levels. The numerical experiments show that MRIG is able to outperform previous works dealing with the homogeneous version of the problem, which assumes the same loading capacity for all vehicles in the fleet. The numerical experiments also confirm that the proposed MRIG approach extends previous works by solving a more realistic HeVRPMD and provides the decision-maker with fleets with higher green levels.Peer Reviewe

    Immune-Mediated Retinal Vasculitis in Posterior Uveitis and Experimental Models: The Leukotriene (LT)B4-VEGF Axis

    No full text
    Retinal vascular diseases have distinct, complex and multifactorial pathogeneses yet share several key pathophysiological aspects including inflammation, vascular permeability and neovascularisation. In non-infectious posterior uveitis (NIU), retinal vasculitis involves vessel leakage leading to retinal enlargement, exudation, and macular oedema. Neovascularisation is not a common feature in NIU, however, detection of the major angiogenic factor—vascular endothelial growth factor A (VEGF-A)—in intraocular fluids in animal models of uveitis may be an indication for a role for this cytokine in a highly inflammatory condition. Suppression of VEGF-A by directly targeting the leukotriene B4 (LTB4) receptor (BLT1) pathway indicates a connection between leukotrienes (LTs), which have prominent roles in initiating and propagating inflammatory responses, and VEGF-A in retinal inflammatory diseases. Further research is needed to understand how LTs interact with intraocular cytokines in retinal inflammatory diseases to guide the development of novel therapeutic approaches targeting both inflammatory mediator pathways

    Green hybrid fleets using electric vehicles : solving the heterogeneous vehicle routing problem with multiple driving ranges and loading capacities

    No full text
    The introduction of Electric Vehicles (EVs) in modern fleets facilitates green road transportation. However, the driving ranges of EVs are limited by the duration of their batteries, which arise new operational challenges. Hybrid fleets of gas and EVs might be heterogeneous both in loading capacities as well as in driving-range capabilities,whichmakes the design of efficient routing plans a difficult task. In this paper, we propose a newMulti-Round IteratedGreedy (MRIG) metaheuristic to solve the Heterogeneous Vehicle Routing Problem with Multiple Driving ranges and loading capacities (HeVRPMD). MRIG uses a successive approximations method to offer the decision maker a set of alternative fleet configurations,with different distance-based costs and green levels. The numerical experiments show that MRIG is able to outperform previous works dealing with the homogeneous version of the problem, which assumes the same loading capacity for all vehicles in the fleet. The numerical experiments also confirm that the proposed MRIG approach extends previous works by solving a more realistic HeVRPMD and provides the decision-maker with fleets with higher green levels
    corecore