124 research outputs found

    The Patriarchal Bargain in a Context of Rapid Changes to Normative Gender Roles: Young Arab Women’s Role Conflict in Qatar

    Get PDF
    Social norms in patriarchal countries in the Middle East are changing at differing rates. In Qatar, expectations about education have shifted, and women’s participation in higher education is normative. However, women’s participation in the workforce remains relatively low, and women still are expected to perform all household and child-rearing activities. Interviews with 27 18–25 year-old Qatari women enrolled in college in Qatar are used to illustrate the conflict between norms about education, workforce, and family. Many young women resolve this normative conflict by giving preference to family over work and education. Other women hold conflicting norms and goals for their future without acknowledging the normative conflict. Overall, young women in this sample feared divorce, were uncertain about customary family safety nets, and thus desired financial independence so they would be able to support themselves if they were left alone later in life due to divorce, or the death of their husband. The Qatari government should revisit the appropriateness of continuing to emphasize the patriarchal family structure and socially conservative family norms, if they desire to advance women in their society

    oA novel nonparametric approach for estimating cut-offs in continuous risk indicators with application to diabetes epidemiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological and clinical studies, often including anthropometric measures, have established obesity as a major risk factor for the development of type 2 diabetes. Appropriate cut-off values for anthropometric parameters are necessary for prediction or decision purposes. The cut-off corresponding to the Youden-Index is often applied in epidemiology and biomedical literature for dichotomizing a continuous risk indicator.</p> <p>Methods</p> <p>Using data from a representative large multistage longitudinal epidemiological study in a primary care setting in Germany, this paper explores a novel approach for estimating optimal cut-offs of anthropomorphic parameters for predicting type 2 diabetes based on a discontinuity of a regression function in a nonparametric regression framework.</p> <p>Results</p> <p>The resulting cut-off corresponded to values obtained by the Youden Index (maximum of the sum of sensitivity and specificity, minus one), often considered the optimal cut-off in epidemiological and biomedical research. The nonparametric regression based estimator was compared to results obtained by the established methods of the Receiver Operating Characteristic plot in various simulation scenarios and based on bias and root mean square error, yielded excellent finite sample properties.</p> <p>Conclusion</p> <p>It is thus recommended that this nonparametric regression approach be considered as valuable alternative when a continuous indicator has to be dichotomized at the Youden Index for prediction or decision purposes.</p

    Deregulated MicroRNAs in Myotonic Dystrophy Type 2

    Get PDF
    Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system. Since microRNA (miRNA) expression is disrupted in Myotonic Dystrophy Type-1 and many other myopathies, miRNAs deregulation was studied in skeletal muscle biopsies of 13 DM2 patients and 13 controls. Eleven miRNAs were deregulated: 9 displayed higher levels compared to controls (miR-34a-5p, miR-34b-3p, miR-34c-5p, miR-146b-5p, miR-208a, miR-221-3p and miR-381), while 4 were decreased (miR-125b-5p, miR-193a-3p, miR-193b-3p and miR-378a-3p). To explore the relevance of DM2 miRNA deregulation, the predicted interactions between miRNA and mRNA were investigated. Global gene expression was analyzed in DM2 and controls and bioinformatic analysis identified more than 1,000 miRNA/mRNA interactions. Pathway and function analysis highlighted the involvement of the miRNA-deregulated mRNAs in multiple aspects of DM2 pathophysiology. In conclusion, the observed miRNA dysregulations may contribute to DM2 pathogenetic mechanisms

    Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pierre-Robin sequence (PRS) is defined by micro- and/or retrognathia, glossoptosis and cleft soft palate, either caused by deformational defect or part of a malformation syndrome. Neurofibromatosis type 2 (NF2) is an autosomal dominant syndrome caused by mutations in the <it>NF2 </it>gene on chromosome 22q12.2. NF2 is characterized by bilateral vestibular schwannomas, spinal cord schwannomas, meningiomas and ependymomas, and juvenile cataracts. To date, NF2 and PRS have not been described together in the same patient.</p> <p>Case presentation</p> <p>We report a female with PRS (micrognathia, cleft palate), microcephaly, ocular hypertelorism, mental retardation and bilateral hearing loss, who at age 15 was also diagnosed with severe NF2 (bilateral cerebellopontine schwannomas and multiple extramedullary/intradural spine tumors). This is the first published report of an individual with both diagnosed PRS and NF2. High resolution karyotype revealed 46, XX, del(22)(q12.1q12.3), FISH confirmed a deletion encompassing <it>NF2</it>, and chromosomal microarray identified a 3,693 kb deletion encompassing multiple genes including <it>NF2 </it>and <it>MN1 </it>(meningioma 1).</p> <p>Five additional patients with craniofacial dysmorphism and deletion in chromosome 22-adjacent-to or containing <it>NF2 </it>were identified in PubMed and the DECIPHER clinical chromosomal database. Their shared chromosomal deletion encompassed <it>MN1</it>, <it>PITPNB </it>and <it>TTC28</it>. <it>MN1</it>, initially cloned from a patient with meningioma, is an oncogene in murine hematopoiesis and participates as a fusion gene (<it>TEL</it>/<it>MN1</it>) in human myeloid leukemias. Interestingly, <it>Mn1</it>-haploinsufficient mice have abnormal skull development and secondary cleft palate. Additionally, <it>Mn1 </it>regulates maturation and function of calvarial osteoblasts and is an upstream regulator of <it>Tbx22</it>, a gene associated with murine and human cleft palate. This suggests that deletion of <it>MN1 </it>in the six patients we describe may be causally linked to their cleft palates and/or craniofacial abnormalities.</p> <p>Conclusions</p> <p>Thus, our report describes a <it>NF2</it>-adjacent chromosome 22q12.2 deletion syndrome and is the first to report association of <it>MN1 </it>deletion with abnormal craniofacial development and/or cleft palate in humans.</p

    Induction of Membrane Ceramides: A Novel Strategy to Interfere with T Lymphocyte Cytoskeletal Reorganisation in Viral Immunosuppression

    Get PDF
    Silencing of T cell activation and function is a highly efficient strategy of immunosuppression induced by pathogens. By promoting formation of membrane microdomains essential for clustering of receptors and signalling platforms in the plasma membrane, ceramides accumulating as a result of membrane sphingomyelin breakdown are not only essential for assembly of signalling complexes and pathogen entry, but also act as signalling modulators, e. g. by regulating relay of phosphatidyl-inositol-3-kinase (PI3K) signalling. Their role in T lymphocyte functions has not been addressed as yet. We now show that measles virus (MV), which interacts with the surface of T cells and thereby efficiently interferes with stimulated dynamic reorganisation of their actin cytoskeleton, causes ceramide accumulation in human T cells in a neutral (NSM) and acid (ASM) sphingomyelinase–dependent manner. Ceramides induced by MV, but also bacterial sphingomyelinase, efficiently interfered with formation of membrane protrusions and T cell spreading and front/rear polarisation in response to β1 integrin ligation or αCD3/CD28 activation, and this was rescued upon pharmacological or genetic ablation of ASM/NSM activity. Moreover, membrane ceramide accumulation downmodulated chemokine-induced T cell motility on fibronectin. Altogether, these findings highlight an as yet unrecognised concept of pathogens able to cause membrane ceramide accumulation to target essential processes in T cell activation and function by preventing stimulated actin cytoskeletal dynamics

    Strategies to inhibit tumour associated integrin receptors: rationale for dual and multi-antagonists

    Get PDF
    YesThe integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions; thrombosis, angiogenesis and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress towards development of antagonists targeting two or more members of the RGD-binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics

    Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target

    Get PDF
    Atypical teratoid rhabdoid tumor (AT/RT) is among the most fatal of all pediatric brain tumors. Aside from loss of function mutations in the SMARCB1 (BAF47/INI1/SNF5) chromatin remodeling gene, little is known of other molecular drivers of AT/RT. LIN28A and LIN28B are stem cell factors that regulate thousands of RNAs and are expressed in aggressive cancers. We identified high-levels of LIN28A and LIN28B in AT/RT primary tumors and cell lines, with corresponding low levels of the LIN28-regulated microRNAs of the let-7 family. Knockdown of LIN28A by lentiviral shRNA in the AT/RT cell lines CHLA-06-ATRT and BT37 inhibited growth, cell proliferation and colony formation and induced apoptosis. Suppression of LIN28A in orthotopic xenograft models led to a more than doubling of median survival compared to empty vector controls (48 vs 115 days). LIN28A knockdown led to increased expression of let-7b and let-7g microRNAs and a down-regulation of KRAS mRNA. AT/RT primary tumors expressed increased mitogen activated protein (MAP) kinase pathway activity, and the MEK inhibitor selumetinib (AZD6244) decreased AT/RT growth and increased apoptosis. These data implicate LIN28/RAS/MAP kinase as key drivers of AT/RT tumorigenesis and indicate that targeting this pathway may be a therapeutic option in this aggressive pediatric malignancy
    • …
    corecore