4,135 research outputs found

    Investigation of the D and E regions of the ionosphere

    Get PDF
    Details of an experimental program that investigates the ionosphere using sounding rockets are presented. The investigation is part of a continuing program to gather data on the D and E regions of the ionosphere during periods of recurring natural phenomena that influence these regions. To achieve these ends, four vehicles were launched during the eclipse of the sun on March 7, 1970. Other vehicles totalling 10 in all were launched to investigate transient phenomena such as the sporadic E layer

    Earth-based lunar atmosphere investigation Final report

    Get PDF
    Instrumentation and results of earth-based spectrometric identification of lunar atmospheric constituents in visible regio

    Self-adjoint Time Operator is the Rule for Discrete Semibounded Hamiltonians

    Get PDF
    We prove explicitly that to every discrete, semibounded Hamiltonian with constant degeneracy and with finite sum of the squares of the reciprocal of its eigenvalues and whose eigenvectors span the entire Hilbert space there exists a characteristic self-adjoint time operator which is canonically conjugate to the Hamiltonian in a dense subspace of the Hilbert space. Moreover, we show that each characteristic time operator generates an uncountable class of self- adjoint operators canonically conjugate with the same Hamiltonian in the same dense subspace.Comment: accepted for publication in the Proceedings of the Royal Society of London

    Viral and Cellular Requirements for the Nuclear Entry of Retroviral Preintegration Nucleoprotein Complexes

    Get PDF
    Retroviruses integrate their reverse transcribed genomes into host cell chromosomes as an obligate step in virus replication. The nuclear envelope separates the chromosomes from the cell cytoplasm during interphase, and different retroviral groups deal with this physical barrier in different ways. Gammaretroviruses are dependent on the passage of target cells through mitosis, where they are believed to access chromosomes when the nuclear envelope dissolves for cell division. Contrastingly, lentiviruses such as HIV-1 infect non-dividing cells, and are believed to enter the nucleus by passing through the nuclear pore complex. While numerous virally encoded elements have been proposed to be involved in HIV-1 nuclear import, recent evidence has highlighted the importance of HIV-1 capsid. Furthermore, capsid was found to be responsible for the viral requirement of various nuclear transport proteins, including transportin 3 and nucleoporins NUP153 and NUP358, during infection. In this review, we describe our current understanding of retroviral nuclear import, with emphasis on recent developments on the role of the HIV-1 capsid protein

    Nucleoporin NUP153 Phenylalanine-Glycine Motifs Engage a Common Binding Pocket within the HIV-1 Capsid Protein to Mediate Lentiviral Infectivity

    Get PDF
    Lentiviruses can infect non-dividing cells, and various cellular transport proteins provide crucial functions for lentiviral nuclear entry and integration. We previously showed that the viral capsid (CA) protein mediated the dependency on cellular nucleoporin (NUP) 153 during HIV-1 infection, and now demonstrate a direct interaction between the CA N-terminal domain and the phenylalanine-glycine (FG)-repeat enriched NUP153 C-terminal domain (NUP153C). NUP153C fused to the effector domains of the rhesus Trim5α restriction factor (Trim-NUP153C) potently restricted HIV-1, providing an intracellular readout for the NUP153C-CA interaction during retroviral infection. Primate lentiviruses and equine infectious anemia virus (EIAV) bound NUP153C under these conditions, results that correlated with direct binding between purified proteins in vitro. These binding phenotypes moreover correlated with the requirement for endogenous NUP153 protein during virus infection. Mutagenesis experiments concordantly identified NUP153C and CA residues important for binding and lentiviral infectivity. Different FG motifs within NUP153C mediated binding to HIV-1 versus EIAV capsids. HIV-1 CA binding mapped to residues that line the common alpha helix 3/4 hydrophobic pocket that also mediates binding to the small molecule PF-3450074 (PF74) inhibitor and cleavage and polyadenylation specific factor 6 (CPSF6) protein, with Asn57 (Asp58 in EIAV) playing a particularly important role. PF74 and CPSF6 accordingly each competed with NUP153C for binding to the HIV-1 CA pocket, and significantly higher concentrations of PF74 were needed to inhibit HIV-1 infection in the face of Trim-NUP153C expression or NUP153 knockdown. Correlation between CA mutant viral cell cycle and NUP153 dependencies moreover indicates that the NUP153C-CA interaction underlies the ability of HIV-1 to infect non-dividing cells. Our results highlight similar mechanisms of binding for disparate host factors to the same region of HIV-1 CA during viral ingress. We conclude that a subset of lentiviral CA proteins directly engage FG-motifs present on NUP153 to affect viral nuclear import

    Host and viral determinants for MxB restriction of HIV-1 infection

    Get PDF
    Background: Interferon-induced cellular proteins play important roles in the host response against viral infection. The Mx family of dynamin-like GTPases, which include MxA and MxB, target a wide variety of viruses. Despite considerable evidence demonstrating the breadth of antiviral activity of MxA, human MxB was only recently discovered to specifically inhibit lentiviruses. Here we assess both host and viral determinants that underlie MxB restriction of HIV-1 infection. Results: Heterologous expression of MxB in human osteosarcoma cells potently inhibited HIV-1 infection (~12-fold), yet had little to no effect on divergent retroviruses. The anti-HIV effect manifested as a partial block in the formation of 2-long terminal repeat circle DNA and hence nuclear import, and we accordingly found evidence for an additional post-nuclear entry block. A large number of previously characterized capsid mutations, as well as mutations that abrogated integrase activity, counteracted MxB restriction. MxB expression suppressed integration into gene-enriched regions of chromosomes, similar to affects observed previously when cells were depleted for nuclear transport factors such as transportin 3. MxB activity did not require predicted GTPase active site residues or a series of unstructured loops within the stalk domain that confer functional oligomerization to related dynamin family proteins. In contrast, we observed an N-terminal stretch of residues in MxB to harbor key determinants. Protein localization conferred by a nuclear localization signal (NLS) within the N-terminal 25 residues, which was critical, was fully rescuable by a heterologous NLS. Consistent with this observation, a heterologous nuclear export sequence (NES) abolished full-length MxB activity. We additionally mapped sub-regions within amino acids 26–90 that contribute to MxB activity, finding sequences present within residues 27–50 particularly important. Conclusions: MxB inhibits HIV-1 by interfering with minimally two steps of infection, nuclear entry and post-nuclear trafficking and/or integration, without destabilizing the inherent catalytic activity of viral preintegration complexes. Putative MxB GTPase active site residues and stalk domain Loop 4 -- both previously shown to be necessary for MxA function -- were dispensable for MxB antiviral activity. Instead, we highlight subcellular localization and a yet-determined function(s) present in the unique MxB N-terminal region to be required for HIV-1 restriction. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0090-z) contains supplementary material, which is available to authorized users

    Engineered Hyperactive Integrase for Concerted HIV-1 DNA Integration

    Get PDF
    The DNA cutting and joining reactions of HIV-1 integration are catalyzed by integrase (IN), a viral protein that functions as a tetramer bridging the two viral DNA ends (intasome). Two major obstacles for biochemical and structural studies of HIV-1 intasomes are 1) the low efficiency of assembly with oligonucleotide DNA substrates, and 2) the non-specific aggregation of both intasomes and free IN in the reaction mixture. By fusing IN with a small non-specific DNA binding protein, Sulfolobus solfataricus chromosomal protein Sso7d (PDB: 1BNZ), we have engineered a highly soluble and hyperactive IN. Unlike wild-type IN, it efficiently catalyzes intasome assembly and concerted integration with oligonucleotide DNA substrates. The fusion IN protein also functions to integrate viral reverse transcripts during HIV-infection. The hyperactive HIV-1 IN may assist in facilitating future biochemical and structural studies of HIV-1 intasomes. Understanding the mechanistic basis of the Sso7d-IN fusion protein could provide insight into the factors that have hindered biophysical studies of wild-type HIV-1 IN and intasomes

    A phase Ib/II study of cabozantinib (XL184) with or without erlotinib in patients with non-small cell lung cancer.

    Get PDF
    PurposeCabozantinib is a multi-kinase inhibitor that targets MET, AXL, and VEGFR2, and may synergize with EGFR inhibition in NSCLC. Cabozantinib was assessed alone or in combination with erlotinib in patients with progressive NSCLC and EGFR mutations who had previously received erlotinib.MethodsThis was a phase Ib/II study (NCT00596648). The primary objectives of phase I were to assess the safety, pharmacokinetics, and pharmacodynamics and to determine maximum tolerated dose (MTD) of cabozantinib plus erlotinib in patients who failed prior erlotinib treatment. In phase II, patients with prior response or stable disease with erlotinib who progressed were randomized to single-agent cabozantinib 100 mg qd vs cabozantinib 100 mg qd and erlotinib 50 mg qd (phase I MTD), with a primary objective of estimating objective response rate (ORR).ResultsSixty-four patients were treated in phase I. Doses of 100 mg cabozantinib plus 50 mg erlotinib, or 40 mg cabozantinib plus 150 mg erlotinib were determined to be MTDs. Diarrhea was the most frequent dose-limiting toxicity and the most frequent AE (87.5% of patients). The ORR for phase I was 8.2% (90% CI 3.3-16.5). In phase II, one patient in the cabozantinib arm (N = 15) experienced a partial response, for an ORR of 6.7% (90% CI 0.3-27.9), with no responses for cabozantinib plus erlotinib (N = 13). There was no evidence that co-administration of cabozantinib markedly altered erlotinib pharmacokinetics or vice versa.ConclusionsDespite responses with cabozantinib/erlotinib in phase I, there were no responses in the combination arm of phase II in patients with acquired resistance to erlotinib. Cabozantinib did not appear to re-sensitize these patients to erlotinib

    Key determinants of target DNA recognition by retroviral intasomes

    Get PDF
    BACKGROUND: Retroviral integration favors weakly conserved palindrome sequences at the sites of viral DNA joining and generates a short (4–6 bp) duplication of host DNA flanking the provirus. We previously determined two key parameters that underlie the target DNA preference for prototype foamy virus (PFV) and human immunodeficiency virus type 1 (HIV-1) integration: flexible pyrimidine (Y)/purine (R) dinucleotide steps at the centers of the integration sites, and base contacts with specific integrase residues, such as Ala188 in PFV integrase and Ser119 in HIV-1 integrase. Here we examined the dinucleotide preference profiles of a range of retroviruses and correlated these findings with respect to length of target site duplication (TSD). RESULTS: Integration datasets covering six viral genera and the three lengths of TSD were accessed from the literature or generated in this work. All viruses exhibited significant enrichments of flexible YR and/or selection against rigid RY dinucleotide steps at the centers of integration sites, and the magnitude of this enrichment inversely correlated with TSD length. The DNA sequence environments of in vivo-generated HIV-1 and PFV sites were consistent with integration into nucleosomes, however, the local sequence preferences were largely independent of target DNA chromatinization. Integration sites derived from cells infected with the gammaretrovirus reticuloendotheliosis virus strain A (Rev-A), which yields a 5 bp TSD, revealed the targeting of global chromatin features most similar to those of Moloney murine leukemia virus, which yields a 4 bp duplication. In vitro assays revealed that Rev-A integrase interacts with and is catalytically stimulated by cellular bromodomain containing 4 protein. CONCLUSIONS: Retroviral integrases have likely evolved to bend target DNA to fit scissile phosphodiester bonds into two active sites for integration, and viruses that cut target DNA with a 6 bp stagger may not need to bend DNA as sharply as viruses that cleave with 4 bp or 5 bp staggers. For PFV and HIV-1, the selection of signature bases and central flexibility at sites of integration is largely independent of chromatin structure. Furthermore, global Rev-A integration is likely directed to chromatin features by bromodomain and extraterminal domain proteins. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-015-0167-3) contains supplementary material, which is available to authorized users

    Galactic Gamma-Ray Background Radiation from Supernova Remnants

    Get PDF
    The contribution of the Source Cosmic Rays (SCRs), confined in Supernova Remnants, to the diffuse high energy \gr emission above 1 GeV from the Galactic disk is studied. \grs produced by the SCRs have a much harder spectrum compared with those generated by the Galactic Cosmic Rays which occupy a much larger residence volume uniformly. SCRs contribute less than 10% at GeV energies and become dominant at \gr energies above 100 GeV. The contributions from π0\pi^0-decay and Inverse Compton \grs have comparable magnitude and spectral shape, whereas the Bremsstrahlung component is negligible. At TeV energies the contribution from SCRs increases the expected diffuse \gr flux almost by an order of magnitude. It is shown that for the inner Galaxy the discrepancy between the observed diffuse intensity and previous model predictions at energies above a few GeV can be attributed to the SCR contribution.Comment: 25 pages, 1 figures, to appear in Ap
    corecore