401 research outputs found

    Deciding Equivalence of Linear Tree-to-Word Transducers in Polynomial Time

    Get PDF
    We show that the equivalence of deterministic linear top-down tree-to-word transducers is decidable in polynomial time. Linear tree-to-word transducers are non-copying but not necessarily order-preserving and can be used to express XML and other document transformations. The result is based on a partial normal form that provides a basic characterization of the languages produced by linear tree-to-word transducers.Comment: short version of this paper will be published in the proceedings of the 20th Conference on Developments in Language Theory (DLT 2016), Montreal, Canad

    Reachability in Higher-Order-Counters

    Full text link
    Higher-order counter automata (\HOCS) can be either seen as a restriction of higher-order pushdown automata (\HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of \HOCS: those that can test whether the topmost counter value is zero and those which cannot. We show that control-state reachability for level kk \HOCS with 00-test is complete for \mbox{(k2)(k-2)}-fold exponential space; leaving out the 00-test leads to completeness for \mbox{(k2)(k-2)}-fold exponential time. Restricting \HOCS (without 00-test) to level 22, we prove that global (forward or backward) reachability analysis is \PTIME-complete. This enhances the known result for pushdown systems which are subsumed by level 22 \HOCS without 00-test. We transfer our results to the formal language setting. Assuming that \PTIME \subsetneq \PSPACE \subsetneq \mathbf{EXPTIME}, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of \HOPS and of \HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet's constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi.Comment: Version with Full Proofs of a paper that appears at MFCS 201

    Recht en web 2.0

    Get PDF
    De klassieke afnemers van internetdiensten zijn leveranciers geworden. Tekst, beeld en geluid wordt door gebruikers geplaatst op Twitter, Youtube, LinkedIn, Hyves, The Pirate Bay, etc. Iedereen is overal bereikbaar, anyone, anytime, anywhere. Door het gebruik van overvloedig beschikbare persoonlijke data verstevigt de overheid zijn governance en bedrijven hun marktpositie. We zijn hulpeloos zonder mobiel en internet. Onze vrienden zijn te vinden op sociale netwerken en je wordt gealarmeerd als bepaalde personen - mobieltjes- zich in je omgeving bevinden. De apparatuur wordt steeds slimmer en de controle door natuurlijke personen vervaagt. We hebben geen inzicht in alle (rechts)gevolgen van wat er gebeurt, door wat en door wie. Is dat de toekomst? Lees, verheugt u of vrees

    Composition closure of linear extended top-down tree transducers

    Get PDF
    Algorithms and the Foundations of Software technolog

    Copyful Streaming String Transducers

    Get PDF
    International audienceCopyless streaming string transducers (copyless SST) have been introduced by R. Alur and P. ˇ Cern´yCern´y in 2010 as a one-way determin-istic automata model to define transductions of finite strings. Copyless SST extend deterministic finite state automata with a set of variables in which to store intermediate output strings, and those variables can be combined and updated all along the run, in a linear manner, i.e., no variable content can be copied on transitions. It is known that copyless SST capture exactly the class of MSO-definable string-to-string trans-ductions, and are as expressive as deterministic two-way transducers. They enjoy good algorithmic properties. Most notably, they have decid-able equivalence problem (in PSpace). On the other hand, HDT0L systems have been introduced for a while, the most prominent result being the decidability of the equivalence problem. In this paper, we propose a semantics of HDT0L systems in terms of transductions, and use it to study the class of deterministic copyful SST. Our contributions are as follows: (i) HDT0L systems and total deterministic copyful SST have the same expressive power, (ii) the equivalence problem for deterministic copyful SST and the equivalence problem for HDT0L systems are inter-reducible, in linear time. As a consequence, equivalence of deterministic SST is decid-able, (iii) the functionality of non-deterministic copyful SST is decidable, (iv) determining whether a deterministic copyful SST can be transformed into an equivalent deterministic copyless SST is decidable in polynomial time

    On the tree-transformation power of XSLT

    Full text link
    XSLT is a standard rule-based programming language for expressing transformations of XML data. The language is currently in transition from version 1.0 to 2.0. In order to understand the computational consequences of this transition, we restrict XSLT to its pure tree-transformation capabilities. Under this focus, we observe that XSLT~1.0 was not yet a computationally complete tree-transformation language: every 1.0 program can be implemented in exponential time. A crucial new feature of version~2.0, however, which allows nodesets over temporary trees, yields completeness. We provide a formal operational semantics for XSLT programs, and establish confluence for this semantics

    Causality and replication in concurrent processes

    Get PDF
    The replication operator was introduced by Milner for obtaining a simplified description of recursive processes. The standard interleaving semantics denotes the replication of a process P, written !P, a shorthand for its unbound parallel composition, operationally equivalent to the process P | P | …, with P repeated as many times as needed. Albeit the replication mechanism has become increasingly popular, investigations on its causal semantics has been scarce. In fact, the correspondence between replication and unbound parallelism makes it difficult to recover basic properties usually associated with these semantics, such as the so-called concurrency diamond. In this paper we consider the interleaving semantics for the operator proposed by Sangiorgi and Walker, and we show how to refine it in order to capture causality. Furthermore, we prove it coincident with the standard causal semantics for recursive process studied in the literature, for processes defined by means of constant invocations

    On the Monadic Second-Order Transduction Hierarchy

    Full text link
    We compare classes of finite relational structures via monadic second-order transductions. More precisely, we study the preorder where we set C \subseteq K if, and only if, there exists a transduction {\tau} such that C\subseteq{\tau}(K). If we only consider classes of incidence structures we can completely describe the resulting hierarchy. It is linear of order type {\omega}+3. Each level can be characterised in terms of a suitable variant of tree-width. Canonical representatives of the various levels are: the class of all trees of height n, for each n \in N, of all paths, of all trees, and of all grids
    corecore