

Edinburgh Research Explorer

How to Remove the Look-Ahead of Top-Down Tree Transducers

Citation for published version:
Engelfriet, J, Maneth, S & Seidl, H 2014, How to Remove the Look-Ahead of Top-Down Tree Transducers.
in Developments in Language Theory: 18th International Conference, DLT 2014, Ekaterinburg, Russia,
August 26-29, 2014. Proceedings. vol. 8633, Springer International Publishing, pp. 103-115. DOI:
10.1007/978-3-319-09698-8_10

Digital Object Identifier (DOI):
10.1007/978-3-319-09698-8_10

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Developments in Language Theory

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43710567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-09698-8_10
https://www.research.ed.ac.uk/portal/en/publications/how-to-remove-the-lookahead-of-topdown-tree-transducers(81cc3d77-32d1-48c8-aaef-f2c55703e9f7).html

How to Remove the Look-Ahead

of Top-Down Tree Transducers

Joost Engelfriet1, Sebastian Maneth2, and Helmut Seidl3

1 LIACS, Leiden University, The Netherlands
engelfri@liacs.nl

2 School of Informatics, University of Edinburgh, United Kingdom
smaneth@inf.ed.ac.uk

3 Institut für Informatik, Technische Universität München, Germany
seidl@in.tum.de

Abstract. For a top-down tree transducer with regular look-ahead we
introduce the notion of difference bound, which is a number bounding
the difference in output height for any two look-ahead states of the trans-
ducer. We present an algorithm that, for a given transducer with a known
difference bound, decides whether it is equivalent to a transducer with-
out regular look-ahead, and constructs such a transducer if the answer
is positive. All transducers are total and deterministic.

1 Introduction

Many simple tree transformations can be modeled by top-down tree transducers,
as recently used in XML database theory (e.g., [6,11,13,15]), in computational
linguistics (e.g., [12,14]) and in picture generation [4]. A top-down tree transducer
is a finite-state device that scans the input tree in a (parallel) top-down fashion,
simultaneously producing the output tree. The more expressive (but also more
complex) top-down tree transducer with regular look-ahead [5] consists of a top-
down tree transducer and a finite-state bottom-up tree automaton, called the
look-ahead automaton. At each input node, the transducer can inspect the look-
ahead state (i.e., the state of the automaton) of each child of that node. Consider,
e.g., a transducer Mex of which the look-ahead automaton checks whether the
input tree has a leaf labeled a; if so, Mex outputs a, otherwise it outputs a copy
of the input tree. Clearly, there is no transducer without look-ahead that realizes
the same translation as Mex. In general, is there a method to determine for a
given top-down tree transducer with look-ahead (dtla), whether or not there is
an equivalent top-down tree transducer without look-ahead (dtop)?

In this paper we provide a general method as discussed above, for total de-
terministic transducers. However, part of the method is not automatic: it de-
pends on additional knowledge about the given transducer with look-ahead. For
transducers with some restrictions concerning the power to copy and erase, that
knowledge can also be obtained automatically.

The main notion on which our method is based, is that of a difference tree of
a dtla M . Consider two trees obtained from one input tree by replacing one leaf

A.M. Shur and M.V. Volkov (Eds.): DLT 2014, LNCS 8633, pp. 103–115, 2014.
c© Springer International Publishing Switzerland 2014

104 J. Engelfriet, S. Maneth, and H. Seidl

by two different look-ahead states of M . Compare now the two output trees of
M on these input trees, where M treats the look-ahead state as representing an
input subtree for which the look-ahead automaton arrives in that state at the
root of the subtree.1 Removing the largest common prefix of these two output
trees (i.e., every node of which every ancestor has the same label in each of
the two trees), we obtain a number of output subtrees that we call difference
trees of M . Intuitively, the largest common prefix is the part of the output that
does not depend on the two possible look-ahead states of the subtree, whereas
a difference tree is a part of the output that can be produced because M knows
that look-ahead state. Thus, the set diff(M) of all difference trees of M can be
viewed as a measure of the impact of the look-ahead on the behaviour ofM . E.g.,
diff(Mex) is infinite: it consists of the one-node tree a and all trees of which no
leaf is labeled a (with one leaf representing a subtree without a-labeled leaves).

The idea of our method is as follows. For any dtop an equivalent canonical
dtop can be constructed [6]. Canonical means that each output node is produced
as early as possible, and that different states of the transducer are inequivalent.
We can generalize that result to dtlas. Thus, if there is a (canonical) dtop N
equivalent to the (canonical) dtla M , then M is at least as early as N : at each
moment of the translation, the output of N is a prefix of that of M . The output
of N is the part of M ’s output that does not depend on the look-ahead state.
Thus, when removing the output of N from that of M , the remaining trees
are difference trees of M . Since N is able to simulate M , it has to store these
difference trees in its states. Hence, diff(M) is finite. In fact, it turns out that
the above description of N ’s behaviour completely determines N , and so N can
be constructed fromM and diff(M), and then tested for equivalence with M [9].

A natural number h is a difference bound for a dtlaM if the following holds: if
M has finitely many difference trees, then h is an upper bound on their height.
Our first main result is that it is decidable for a given dtla M for which a
difference bound is also given, whether M is equivalent to a dtop N , and if so,
such a dtop N can be constructed. We do not know whether a difference bound
can be computed for every dtla M , but the designer of M will usually be able
to determine diff(M) and hence a difference bound for M . Our second main
result is that a difference bound can be computed for dtlas that are linear and
nonerasing (or even ultralinear and bounded erasing); the proof is too involved
to be presented here. The full version of this paper can be found in [7].

Related Work. For deterministic string transducers it is decidable whether a
given transducer with look-ahead is equivalent to a transducer without look-
ahead, and if so, such a transducer can be constructed. This was proved in [3]
(see also [2, Theorem IV.6.1]), for so-called subsequential functions. For macro
tree transducers [8] and streaming tree transducers [1], regular look-ahead can
always be removed. The same is true for nondeterministic visibly pushdown
transducers [10]; for deterministic visibly pushdown transducers the addition
of regular look-ahead increases their power, but the decidability of look-ahead
removal for these transducers is not studied in [10].

1 SinceM is total and deterministic, the output trees exist and are unique, respectively.

How to Remove the Look-Ahead of Top-Down Tree Transducers 105

2 Top-Down Tree Transducers and Difference Trees

We assume the reader to be familiar with top-down tree transducers working on
ranked trees: the number of children of a tree node is determined by its label.

A deterministic top-down tree transducer with regular look-ahead (dtla for
short) is a tuple M = (Q,Σ,Δ,R,A, P, δ) where Q is a finite set of states
of rank 1, Σ and Δ are the ranked input and output alphabets, and P is a
finite nonempty set of look-ahead states. For every p ∈ P , A(p) is a tree in
TΔ(Q({x0})) called the p-axiom of M .2 For every q ∈ Q, a ∈ Σ of rank k ≥ 0,
and p1, . . . , pk ∈ P , the set R contains at most one rule q(a(x1 : p1, . . . , xk :
pk))→ ζ where ζ is a tree in TΔ(Q(Xk)) denoted by rhs(q, a, p1, . . . , pk). Finally,
δ is the transition function of the (total deterministic bottom-up) look-ahead
automaton (P, δ), i.e., δ(a, p1, . . . , pk) ∈ P for every a ∈ Σ of rank k ≥ 0 and
p1, . . . , pk ∈ P . The extension of δ to a mapping from TΣ to P , also denoted by
δ, is defined by δ(a(s1, . . . , sk)) = δ(a, δ(s1), . . . , δ(sk)) for a ∈ Σ of rank k ≥ 0
and s1, . . . , sk ∈ TΣ . For p ∈ P we define [[p]]M = {s ∈ TΣ | δ(s) = p}. The dtla
M realizes the partial function [[M]] : TΣ → TΔ, called its translation, defined
for s ∈ TΣ by [[M]](s) = A(δ(s))[q(x0) ← [[q]]M (s) | q ∈ Q].3 For q ∈ Q the
partial function [[q]]M : TΣ → TΔ is defined for s ∈ TΣ of the form a(s1, . . . , sk)
by [[q]]M (s) = rhs(q, a, δ(s1), . . . , δ(sk))[q

′(xi) ← [[q′]]M (si) | q′ ∈ Q, 1 ≤ i ≤ k].
We write M(s) for [[M]](s), and qM (s) for [[q]]M (s). Two dtlas M1 and M2 are
equivalent if they realize the same translation, i.e., ΣM1 = ΣM2 , ΔM1 = ΔM2

and [[M1]] = [[M2]].

Convention. We (can) assume that all states and look-ahead states of M are
reachable: p ∈ P is reachable if [[p]]M �= ∅; q ∈ Q is reachable if q occurs in an
axiom, or in the right-hand side of a rule of which the left-hand side starts with
a reachable state.

A dtla M is total if its translation [[M]] is a total function, i.e., its domain is
TΣ . From now on we only consider total dtlas.

A deterministic top-down tree transducer (dtop for short) is a dtla M such
that P is a singleton, i.e., P = {p}. For convenience, we drop (P, δ) from the tuple
defining M , write a rule as q(a(x1, . . . , xk)) → ζ rather than q(a(x1 : p, . . . , xk :
p))→ ζ, identify A with the unique axiom A(p), and denote ζ by rhs(q, a).

A dtla M is proper (a dtpla for short) if it is not a dtop, i.e., if |P | ≥ 2.

2 We use variables xi with i ∈ N, of rank 0. The set {x0, x1, x2, . . . } is denoted X;
for k ∈ N, Xk := {x1, . . . , xk}. For a set of trees T , Q(T) is the set of trees q(t)
with q ∈ Q and t ∈ T , and TΔ(T) is the smallest set of trees T ′ containing T such
that d(t1, . . . , tk) ∈ T ′ if d ∈ Δ and t1, . . . , tk ∈ T ′ (where d has rank k). We denote
TΔ(∅) by TΔ. For a tree t ∈ TΔ, we denote by V (t) the set of nodes of t, which are
strings of positive natural numbers, i.e., V (t) ⊆ N

∗
+ with N+ = N− {0}. The empty

string ε is the root node and, for i ∈ N+, vi is the ith child of the node v. Every node
v ∈ V (t) has a label in Δ, denoted lab(t, v); the subtree of t rooted at v is denoted
by t/v. For d ∈ Δ, we define Vd(t) = {v ∈ V (t) | lab(t, v) = d}.

3 For sets of trees S ,T , a tree t ∈ T and a partial function ψ : S → T , we define
t[s ← ψ(s) | s ∈ S] to be the result of replacing every subtree s of t by ψ(s), for
every s ∈ S (assuming that no tree in S has a proper subtree in S).

106 J. Engelfriet, S. Maneth, and H. Seidl

Look-Ahead States in Input Trees. Let M = (Q,Σ,Δ,R,A, P, δ) be a (total)
dtla. To analyze the behaviour of M for different look-ahead states, we consider
input trees s̄ with occurrences of p ∈ P , viewed as input symbol of rank zero,
representing an absent subtree s with δ(s) = p. Intuitively, when M arrives in
state q at a p-labeled leaf of s̄, we let M output the new symbol 〈q, p〉 of rank
zero, representing the absent output tree qM (s); thus, input trees s̄ ∈ TΣ(P)
are translated to output trees in TΔ(Q × P). Formally, we extend M to a dtla
M◦ = (Q,Σ◦, Δ◦, R◦, A, P, δ◦) where Σ◦ = Σ ∪ P , every element of P has rank
zero, Δ◦ = Δ∪(Q×P), every element of Q×P has rank zero, R◦ = R∪{q(p)→
〈q, p〉 | q ∈ Q, p ∈ P, ∃s ∈ [[p]]M : qM (s) is defined}, and δ◦ is the extension of δ
with δ◦(p) = p for every p ∈ P . For notational simplicity, we will denote δ◦(s̄),
M◦(s̄) and qM◦(s̄) by δ(s̄), M(s̄) and qM (s̄), respectively, for every s̄ ∈ TΣ(P).
But note that [[p]]M , [[M]] and [[q]]M keep their meaning.

A Σ-context is a tree in TΣ({⊥}) that contains exactly one occurrence of ⊥
(which is a new symbol of rank 0). The set of all Σ-contexts is denoted CΣ . For
C ∈ CΣ and a tree s, the tree C[s] is obtained from the context C by replacing
the unique occurrence of ⊥ in C by s. We consider in particular trees C[p] where
C ∈ CΣ and p ∈ P . Note that the tree M(C[p]) is in TΔ(Q× {p}).

Lemma 1. Let M be a dtla. Let C ∈ CΣ, s ∈ TΣ(P) and p ∈ P such that δ(s) =
p. Then δ(C[s]) = δ(C[p]) and M(C[s]) =M(C[p])

[
〈q, p〉 ← qM (s) | q ∈ Q

]
.

Difference Trees and Difference Bounds. For a ranked alphabet Ω, an Ω-pattern
(or just pattern) is a tree in TΩ({⊥}), where ⊥ /∈ Ω has rank 0. Intuitively, an Ω-
pattern is a prefix of a tree in TΩ. If t0 ∈ TΩ({⊥}) contains exactly k occurrences
of ⊥, and t1, . . . , tk ∈ TΩ({⊥}), then the pattern t = t0[t1, . . . , tk] is obtained
from t0 by replacing the ith occurrence of ⊥ (in left-to-right order) by ti. On
the set TΩ({⊥}) we define a partial order: for patterns t and t′, t′ is a prefix of
t, denoted t′ � t, if t = t′[t1, . . . , tk] for some patterns t1, . . . , tk; equivalently,
Vb(t

′) ⊆ Vb(t) for every b ∈ Ω. In [6] the inverse of � is used. Note that ⊥ � t
for every pattern t. Every nonempty set Π of Ω-patterns has a greatest lower
bound �Π in TΩ({⊥}), called the largest common prefix of the patterns in Π ;
it is the unique pattern t′ such that for every v ∈ N

∗
+ and b ∈ Ω, v ∈ Vb(t′) if

and only if (1) v ∈ Vb(t) for every t ∈ Π and (2) every proper ancestor of v is in
V (t′). For instance, �{σ(τ(a), b), σ(b, b)} = σ(τ(a), b) � σ(b, b) = σ(⊥, b).

We wish to decide whether the dtla M is equivalent to a dtop. Let C be a
Σ-context and let p, p′ ∈ P . As explained in the Introduction, we are interested
in the difference between M(C[p]) and M(C[p′]), cf. Lemma 1. Intuitively, a
dtop N that is equivalent toM does not know whether the subtree s of an input
tree C[s] has look-ahead state p or p′, and hence, when reading the context
C, it can output at most the largest common prefix M(C[p]) �M(C[p′]) of the
output treesM(C[p]) andM(C[p′]). Let v be a node ofM(C[p])�M(C[p′]) with
label ⊥. Then we say that M(C[p])/v is a difference tree of M (and hence, by
symmetry, so is M(C[p′])/v). Thus, a difference tree is a part of the output that
can be produced by M because it knows that s has look-ahead state p (or p′).
Intuitively, to simulateM , the dtop N must store the difference trees in its state.

How to Remove the Look-Ahead of Top-Down Tree Transducers 107

Hence, forN to exist, there should be finitely many difference trees (Corollary 1).
We denote the set of all difference trees of M by diff(M), for varying C, p, p′

and v. Thus we define diff(M) = {M(C[p])/v | C ∈ CΣ , p ∈ P, ∃p′ ∈ P : v ∈
V⊥(M(C[p])�M(C[p′]))} which is a subset of TΔ(Q×P). We define the number
maxdiff(M) ∈ N∪{∞} to be the maximal height of all difference trees ofM , i.e.,
maxdiff(M) = sup{ht(t) | t ∈ diff(M)}. Intuitively, maxdiff(M) gives a measure
of how muchM makes use of its look-ahead information. Obviously, maxdiff(M)
is finite if and only if diff(M) is finite. A number h(M) ∈ N is a difference bound
for M if either diff(M) is infinite or maxdiff(M) ≤ h(M). Our first main result
is that if a difference bound for M is known, then we can decide whether M is
equivalent to a dtop, and if so, construct such a dtop from M (Theorem 2).

Example 1. Let Σ = Δ = {σ(1), a(0), b(0)}, the ranked alphabet {σ, a, b} such
that σ has rank 1 and a, b have rank 0. For n ∈ N, the tree σ(σ(· · · σ(a) · · ·)) with
n occurrences of σ is denoted by σna. Consider a dtla M = (Q,Σ,Δ,R,A, P, δ)
such thatM(σna) = a andM(σnb) = σnb for every n ∈ N. It is, in fact, the dtla
Mex of the Introduction, for this particular input alphabet. Its set of look-ahead
states is P = {pa, pb} with transition function δ defined by δ(a) = pa, δ(b) = pb,
δ(σ, pa) = pa and δ(σ, pb) = pb. Its set of states is Q = {q}, its axioms are
A(pa) = a and A(pb) = q(x0), and R contains the rules q(σ(x1 :pb))→ σ(q(x1))
and q(b)→ b.

For C = σn⊥, M(C[pa]) = a and M(C[pb]) = σn〈q, pb〉. Since M(C[pa]) �
M(C[pb]) = ⊥, the only node of M(C[p]) �M(C[p′]) with label ⊥ is ε. Hence,
diff(M) = {a} ∪ {σn〈q, pb〉 | n ∈ N} and maxdiff(M) = ∞. Since diff(M) is
infinite, M is not equivalent to a dtop, as will be shown in Corollary 1. ��

Example 2. Let Σ = {σ(2), aa(0), ab(0), ba(0), bb(0)} where we view aa, ab, ba
and bb as symbols, and let Δ = Σ ∪ {#(2), a(0), b(0)} with σ(3) instead of
σ(2). We consider a dtla M such that M(yz) = yz for y, z ∈ {a, b}; moreover,
M(σ(s1, s2)) = σ(M(s1),M(s2),#(y, z)) where y ∈ {a, b} is the first letter of
the label of the left-most leaf of σ(s1, s2) and z ∈ {a, b} is the second letter of the
label of its right-most leaf. It has four look-ahead states pyz with y, z ∈ {a, b},
such that δ(yz) = pyz and δ(σ, pwx, pyz) = pwz for all w, x, y, z ∈ {a, b}. It has
one state q, its axioms are A(pyz) = q(x0), and its rules are q(yz) → yz and
q(σ(x1 :pwx, x2 :pyz))→ σ(q(x1), q(x2),#(w, z)) for all w, x, y, z ∈ {a, b}.

Consider a Σ-context C and the trees M(C[paa]) and M(C[pba]). Let u be
the node of C with lab(C, u) = ⊥. It is easy to see that the nodes of M(C[p]) �
M(C[p′]) with label ⊥ are the node u and all nodes v · (3, 1) such that v �= u is
a node of C and u is the left-most leaf of C/v. That gives the difference trees
M(C[paa])/u = 〈q, paa〉, M(C[pba])/u = 〈q, pba〉, M(C[paa])/v · (3, 1) = a and
M(C[pba])/v · (3, 1) = b. Thus, diff(M) = {a, b} ∪ {〈q, pyz〉 | y, z ∈ {a, b}} and
maxdiff(M) = 0.

A dtop N equivalent to M has states q0, q1, q2, axiom q0(x0), and rules
q0(yz) → yz, q1(yz) → y, q2(yz) → z for y, z ∈ {a, b}, q2(σ(x1, x2)) → q2(x2),
q1(σ(x1, x2))→ q1(x1), and q0(σ(x1, x2))→ σ(q0(x1), q0(x2),#(q1(x1), q2(x2))).

��

108 J. Engelfriet, S. Maneth, and H. Seidl

3 Normal Form

In this section we state a normal form for (total) dtlas M , together with its
effect on maxdiff(M). We start by requiring a simple and technically convenient
property so that every state ofM only translates input trees that have the same
look-ahead state; moreover, the rules satisfy a completeness condition.

A dtla M is look-ahead uniform (for short, la-uniform) if there is a mapping
ρ : Q → P (called la-map) satisfying the following conditions, for p ∈ P and
q, q̄ ∈ Q:

(1) If q(x0) occurs in A(p), then ρ(q) = p.
(2) For every rule q(a(x1 : p1, . . . , xk : pk)) → ζ in R: ρ(q) = δ(a, p1, . . . , pk),

and if q̄(xi) occurs in ζ then ρ(q̄) = pi.
(3) For every q ∈ Q, a ∈ Σ of rank k ≥ 0, and p1, . . . , pk ∈ P such that

δ(a, p1, . . . , pk) = ρ(q), there is a rule q(a(x1 :p1, . . . , xk :pk))→ ζ in R.
If M is la-uniform, then the domain of [[q]]M is [[ρ(q)]]M for every q ∈ Q. This

implies that M◦ is la-uniform with the same la-map ρ as M .
Clearly, the dtla M of Example 1 is la-uniform with ρ(q) = pb, but the dtla

M of Example 2 is not la-uniform.

Example 3. We change the dtla M of Example 2 into an la-uniform dtla (still
calling itM), with the same look-ahead automaton asM , by adding look-ahead
information to its states. Thus, it has set of states Q = {qyz | y, z ∈ {a, b}} with
ρ(qyz) = pyz, axioms A(pyz) = qyz(x0), and rules qyz(yz) → yz and qwz(σ(x1 :
pwx, x2 :pyz))→ σ(qwx(x1), qyz(x2),#(w, z)) for all w, x, y, z ∈ {a, b}. ��

A dtlaM is earliest if it is la-uniform and, for every state q ofM , rlabsM (q) :=
{lab(qM (s), ε) | s ∈ [[ρ(q)]]M} ⊆ Δ is not a singleton. Thus, M is not earliest if
it has a state q for which the roots of all output trees qM (s), s ∈ TΣ , have the
same label; intuitively, the node with that label could be produced earlier byM .
A dtla M is canonical if it is earliest and [[q]]M �= [[q′]]M for all distinct states
q, q′ of M .

It is easy to see that the dtlaM of Example 3 is canonical: for all y, z ∈ {a, b},
rlabsM (qyz) = {yz, σ} and [[qyz]]M is the restriction of [[M]] to [[pyz]]M .

We now present (without proof) the fact that canonicalness is a normal form
for dtlas, generalizing the normal form for dtops in [6] for the total case.

Theorem 1. For every total dtla M , one can construct an equivalent canonical
dtla can(M), with the same look-ahead automaton as M , such that maxdiff(M)−
8|M|3 ≤ maxdiff(can(M)) ≤ maxdiff(M) + 8|M|3 , where |M | is the size of M .

4 Difference Tuples

Let M be a dtpla and let P = {p̂1, . . . , p̂n}, where the order of the look-ahead
states is fixed as indicated. Recall that a dtpla is a dtla that is not a dtop,
hence n ≥ 2. For a given context C consider the trees M(C[p̂1]), . . . ,M(C[p̂n]).
Intuitively, the largest common prefix of these trees does not depend on the

How to Remove the Look-Ahead of Top-Down Tree Transducers 109

look-ahead. In contrast, the subtrees that are not part of the largest common
prefix, do depend on the look-ahead information.

For trees t1, . . . , tn ∈ TΔ(Q×P) we define a subset of TΔ(Q×P)n as follows:
diftup(t1, . . . , tn) := {(t1/v, . . . , tn/v) | v ∈ V⊥(�{t1, . . . , tn})}. We define the set
of difference tuples ofM as diftup(M) :=

⋃
C∈CΣ

diftup(M(C[p̂1]), . . . ,M(C[p̂n])).
For a Σ-context C we define the Δ-pattern pref(M,C) := �{M(C[p]) | p ∈ P}.

We wish to decide whether M is equivalent to a dtop. If there exists such
a dtop N , then we may expect intuitively for any s ∈ TΣ , that N(C[s]) =
t[(q1)N (s), . . . , (qr)N (s)] where t = pref(M,C) = �{M(C[p̂1]), . . . ,M(C[p̂n])}
and r = |V⊥(t)|; in other words, since N does not know the look-ahead state
δM (s) of s, it translates C into the largest common prefix of the output trees
M(C[p̂1]), . . . ,M(C[p̂n]). Moreover, if the ith occurrence of ⊥ is at node vi of t,
1 ≤ i ≤ r, then we expect the difference tuple (M(C[p̂1])/vi, . . . ,M(C[p̂n])/vi)
to be stored in the state qi of N ; in this way N is prepared to continue its
simulation of M on the subtree s. This is shown in Lemma 4, for canonical M
and earliestN . If N is canonical, then its states are in one-to-one correspondence
with the difference tuples of M , as shown in Lemma 5.

It is easy to show that every component of a difference tuple is a difference
tree, and every difference tree is a subtree of a component of a difference tuple.
Consequently, the maximal height of the components of the difference tuples of
M is maxdiff(M), see [7, Lemma 17]. This implies that diftup(M) is finite if and
only if diff(M) is finite.

Example 4. For the dtlaM of Example 1, with the order P = {pa, pb}, we obtain
that diftup(M) = {(a, σn〈q, pb〉) | n ∈ N}.

For the dtlaM of Example 3 (which is the la-uniform version of the dtla of Ex-
ample 2) it is not difficult to see that diff(M) = {a, b}∪{〈qyz, pyz〉 | y, z ∈ {a, b}},
and that the set diftup(M) consists of the three 4-tuples (a, a, b, b), (a, b, a, b)
and (〈qaa, paa〉, 〈qab, pab〉, 〈qba, pba〉, 〈qbb, pbb〉), with P = {paa, pab, pba, pbb}. ��

In the next lemmas, M is a canonical dtpla (with la-map ρM) and N a
canonical dtop equivalent to M , i.e., [[M]] = [[N]]. We assume that the unique
look-ahead state of N is ⊥; for a Σ-context C we of course write C instead of
C[⊥].

We first formalize the fact that the translation of an input tree byM is always
ahead of its translation by N , in a uniform way. An aheadness mapping from N
to M is a function ϕ : QN × PM → TΔ(QM × PM) such that for every C ∈ CΣ
and p ∈ PM ,

M(C[p]) = N(C)[〈q,⊥〉 ← ϕ(q, p) | q ∈ QN]. (1)

Note that ϕ(q, p) is in TΔ({〈q̄, p〉 | q̄ ∈ QM , ρM (q̄) = p}). Intuitively, ϕ defines
the exact amount in which M is ahead of N , which is independent of C.

For the next lemma it is essential that M is canonical.

Lemma 2. There is a unique aheadness mapping ϕ from N to M .

110 J. Engelfriet, S. Maneth, and H. Seidl

Proof. We first show thatM is ahead ofN , i.e., that all output symbols produced
by N on a given input context are also produced byM . Let p ∈ PM and C ∈ CΣ .
Claim 1. Vd(N(C)) ⊆ Vd(M(C[p])) for every d ∈ Δ.
Equivalently, N(C)[〈q,⊥〉 ← ⊥ | q ∈ QN] �M(C[p]).

Proof: By induction on the length of the nodes of N(C). Let v ∈ Vd(N(C))
with d ∈ Δ. Since the labels of v’s proper ancestors are in Δ, v ∈ V (M(C[p]))
by induction. Consider an arbitrary s ∈ [[p]]M . By Lemma 1, v ∈ Vd(N(C[s])).
Since [[M]] = [[N]], M(C[s]) = N(C[s]) and so v ∈ Vd(M(C[s])). Suppose that
v /∈ Vd(M(C[p])). Then, again by Lemma 1, v has some label 〈q, p〉 in M(C[p])
such that qM (s) has root label d. Since this holds for every s ∈ [[p]]M , we obtain
that rlabsM (q) = {d} contradicting the fact that M is earliest. Note that, since
M is la-uniform, ρM (q) = p.

Next we show that the amount in which M is ahead of N , is independent of
C. Let p ∈ PM , C1, C2 ∈ CΣ , v1, v2 ∈ N

∗
+ and q ∈ QN .

Claim 2. If N(C1)/v1 = N(C2)/v2 = 〈q,⊥〉, then M(C1[p])/v1 =M(C2[p])/v2.

Proof: By Claim 1, vi is a node of M(Ci[p]). Let ti ∈ TΔ(QM × {p}) denote
the tree M(Ci[p])/vi. For every s ∈ [[p]]M , N(C1[s])/v1 = N(C2[s])/v2 = qN (s)
by Lemma 1, and so M(C1[s])/v1 = M(C2[s])/v2. Hence, again by Lemma 1,
t1Ψs = t2Ψs for all s ∈ [[p]]M , where Ψs = [〈q, p〉 ← qM (s) | q ∈ QM]. Suppose
that t1 �= t2. Then there is a leaf v of, e.g., t1 with label 〈q1, p〉 such that v is a
node of t2 with t2/v �= 〈q1, p〉. If the root label of t2/v is d ∈ Δ, then (q1)M (s)
has root label d for all s ∈ [[p]]M , contradicting the fact thatM is earliest. If t2/v
equals 〈q2, p〉 with q1 �= q2, then (q1)M (s) = (q2)M (s) for all s ∈ [[p]]M . Since
[[p]]M is the domain of both [[q1]]M and [[q2]]M , we obtain that [[q1]]M = [[q2]]M ,
contradicting the fact that M is canonical.

An aheadness mapping from N to M can now be defined as follows. Let
q ∈ QN and p ∈ PM . Since, by convention, q is reachable, there is a Σ-context C
such that N(C) has a node v labeled 〈q,⊥〉. By Claim 1, v is a node of M(C[p])
and we define ϕ(q, p) = M(C[p])/v. By Claim 2, the definition of ϕ does not
depend on C and v. It is easy to see that ϕ is an aheadness mapping, and that
it is unique. ��
Lemma 3. For every s ∈ TΣ and q ∈ QN ,
if δM (s) = p, then qN (s) = ϕ(q, p)[〈q̄, p〉 ← q̄M (s) | q̄ ∈ QM].

Proof. Since q is reachable, there exist C, v such that N(C)/v = 〈q,⊥〉. By (1),
M(C[p])/v = ϕ(q, p). Since M and N are equivalent, N(C[s]) = M(C[s]). Ap-
plying Lemma 1 twice, we obtain that qN (s) = N(C[s])/v = M(C[s])/v =
(M(C[p])/v)[〈q̄, p〉 ← q̄M (s) | q̄ ∈ QM], which proves the equation. ��

The next lemma expresses our intuition that the output of N on input C
is the largest common prefix of the outputs of M on all inputs C[p], p ∈ P ,
such that the difference tuples of M are stored in the states of N . Its proof
uses that N is earliest. For a tree t ∈ TΔ(QN × {⊥}) we define the Δ-pattern
tΦ := t[〈q,⊥〉 ← ⊥ | q ∈ QN]; similarly, for t ∈ TΔ(QN (X)), we define tΦ :=
t[q(xi)← ⊥ | q ∈ QN , i ∈ N].

How to Remove the Look-Ahead of Top-Down Tree Transducers 111

Lemma 4. For every C ∈ CΣ, N(C)Φ = pref(M,C); moreover, for every v ∈
N

∗
+, q ∈ QN and p ∈ PM , if N(C)/v = 〈q,⊥〉 then ϕ(q, p) =M(C[p])/v.

Proof. By Equation (1), N(C)Φ � M(C[p]) for every p ∈ PM (cf. Claim 1 in
the proof of Lemma 2), and so N(C)Φ � pref(M,C). To show equality, we prove
for every v ∈ V⊥(N(C)Φ) that v ∈ V⊥(pref(M,C)). Let N(C)/v = 〈q,⊥〉 for
q ∈ QN . Then, by Equation (1), M(C[p])/v = ϕ(q, p) for every p ∈ PM (which
proves the second part of this lemma). Suppose that v ∈ Vd(pref(M,C)) with
d ∈ Δ. Then v ∈ Vd(M(C[p])) and so lab(ϕ(q, p), ε) = d for every p ∈ PM . Then,
by Lemma 3, lab(qN (s), ε) = d for every s ∈ TΣ , contradicting the fact that N
is earliest. ��

If M is equivalent to a dtop, then it is equivalent to a canonical dtop by
Theorem 1. By [6, Theorem 15], equivalent canonical dtops are the same (modulo
a renaming of states). Thus, if M is equivalent to a dtop, then it is equivalent to
a unique canonical dtop td(M). In the next three lemmas we give another proof
of this, and we show that td(M) can be constructed from M and diftup(M). We
start by showing that Qtd(M) can be identified with diftup(M). The proof uses
that N is canonical.

Lemma 5. For a state q ∈ QN , let ψ(q) = (ϕ(q, p̂1), . . . , ϕ(q, p̂n)), where PM =
{p̂1, . . . , p̂n}. Then ψ is a bijection between QN and diftup(M).

Proof. (i) ψ(q) ∈ diftup(M). Proof: There are C, v such that N(C)/v = 〈q,⊥〉.
By Lemma 4, v ∈ V⊥(pref(M,C)) and M(C[p̂i])/v = ϕ(q, p̂i) for every i. Thus
ψ(q) ∈ diftup(M). (ii) ψ is surjective. Proof: If (t1, . . . , tn) ∈ diftup(M) then
there are C, v such that pref(M,C)/v = ⊥ and M(C[p̂i])/v = ti for every i.
By Lemma 4, N(C)/v = 〈q,⊥〉 for some q ∈ QN , and M(C[p̂i])/v = ϕ(q, p̂i).
Thus, ti = ϕ(q, p̂i) for every i. (iii) ψ is injective. Proof: Let ψ(q1) = ψ(q2). By
Lemma 3, (q1)N (s) = (q2)N (s) for all s ∈ TΣ , i.e., [[q1]]N = [[q2]]N , so q1 = q2
because N is canonical. ��

Corollary 1. Let M be a total dtla. If M is equivalent to a dtop, then diff(M)
is finite.

Proof. If M is a dtop, then diff(M) = ∅. Now let M be a dtpla, equivalent to a
dtop. By Theorem 1, the canonical dtla can(M) is equivalent to a canonical dtop.
By Lemmas 2 and 5, diftup(can(M)) is finite, and so diff(can(M)) is finite. Hence

diff(M) is finite because maxdiff(M) ≤ maxdiff(can(M)) + 8|M|3 , cf. Theorem 1.
��

Next we show how to compute the axiom of td(M), representing the states
of td(M) by difference tuples. For a tree t ∈ TΔ(QM (X)) we define tΩ ∈
TΔ(QM × PM) by tΩ := t[q(xi) ← 〈q, ρM (q)〉 | q ∈ QM , i ∈ N]; similarly,
for t ∈ TΔ(QN (X)), we define tΩ := t[q(xi)← 〈q,⊥〉 | q ∈ QN , i ∈ N].

Lemma 6. ANΦ = �{AM (p)Ω | p ∈ PM}; moreover, for every v ∈ N
∗
+, q ∈ QN

and p ∈ PM , if AN/v = q(x0) then ϕ(q, p) = AM (p)Ω/v.

112 J. Engelfriet, S. Maneth, and H. Seidl

Proof. Clearly, N(⊥) = ANΩ and M(p) = AM (p)Ω for every p ∈ PM . Hence
by Lemma 4, with C = ⊥, ANΦ = ANΩΦ = N(⊥)Φ = pref(M,⊥) = �{M(p) |
p ∈ PM} = �{AM (p)Ω | p ∈ PM}. If AN/v = q(x0) then N(⊥)/v = ANΩ/v =
〈q,⊥〉; so by Lemma 4, with C = ⊥, ϕ(q, p) = M(p)/v = AM (p)Ω/v for every
p ∈ PM . ��

Finally we show, without proof, how to compute the rules of td(M). LetM be
an la-uniform dtla, QN a finite set and ϕ : QN×PM → TΔ(QM×PM) a mapping
such that ϕ(q, p) ∈ TΔ({〈q̄, p〉 | q̄ ∈ QM , ρM (q̄) = p}) for every q ∈ QN and
p ∈ PM . Then we define for every q ∈ QN , a ∈ Σ of rank k ≥ 0, and p1, . . . , pk ∈
PM , the tree rhsM,ϕ(q, a, p1, . . . , pk) := ϕ(q, p)[〈q̄, p〉 ← rhsM (q̄, a, p1, . . . , pk) |
q̄ ∈ QM] where p = δM (a, p1, . . . , pk). For k ∈ N, let [k] = {1, . . . , k}.

Lemma 7. (1) For every q ∈ QN and a ∈ Σ of rank k ≥ 0,
rhsN (q, a)Φ = �{rhsM,ϕ(q, a, p1, . . . , pk)Ω | p1, . . . , pk ∈ PM}.

(2) Let q ∈ QN , a ∈ Σ of rank k ≥ 0, and i ∈ [k]. For j ∈ [k], j �= i, let sj ∈ TΣ
and pj = δM (sj). Let ΨiM = [q̄(xj)← q̄M (sj) | q̄ ∈ QM , j ∈ [k], j �= i]Ω.
For every v ∈ V⊥(rhsN (q, a)Φ),
(a) rhsN (q, a)/v ∈ QN({xi}) if and only if

v ∈ V⊥(�{rhsM,ϕ(q, a, p1, . . . , pi−1, p, pi+1, . . . , pk)ΨiM | p ∈ PM}), and
(b) for every q̄ ∈ QN and p ∈ PM , if rhsN(q, a)/v = q̄(xi) then

ϕ(q̄, p) = rhsM,ϕ(q, a, p1, . . . , pi−1, p, pi+1, . . . , pk)ΨiM/v.

By the last three lemmas, every dtpla M that is equivalent to a dtop, is
equivalent to a unique canonical dtop td(M), modulo a renaming of states. Based
on these same lemmas, we can now construct td(M) from any given canonical
dtpla M for which diftup(M) is a given finite set. The construction returns
the answer ‘no’ if M is not equivalent to any dtop. We construct the dtop N =
td(M), if it exists, by taking QN = diftup(M), defining ϕ : QN×PM → TΔ(QM×
PM) as ϕ((t1, . . . , tn), p̂i) = ti for i ∈ [n] (in accordance with Lemma 5), and
constructing the axiom and rules ofN according to Lemmas 6 and 7, respectively
(i.e., by viewing the statements of these lemmas as definitions). In Lemma 7(2)
we choose sj arbitrarily but fixed. If the construction of an axiom or a rule fails
because a possible state occurring in it (which is a tuple in TΔ(QM × PM)n) is
not a difference tuple of M , then the answer is ‘no’. The construction of a rule
can also fail (and produce the answer ‘no’) when a node v ∈ V⊥(rhsN (q, a)Φ) is
not an element of V⊥(�{rhsM,ϕ(q, a, p1, . . . , pi−1, p, pi+1, . . . , pk)ΨiM | p ∈ PM})
for any i, see Lemma 7(2)(a). If the construction of the dtop N succeeds, then it
remains to test whetherM andN are equivalent (because, by Lemmas 5, 6 and 7,
if M is equivalent to a dtop then it is equivalent to N). If they are equivalent
then the construction returns the dtop N = td(M), otherwise the answer is ‘no’.
Equivalence of dtlas is decidable by [9] (see also [6, Corollary 19]). It is shown
in [7, Section 6.1] that there is a simple direct test for equivalence of M and N .

Unfortunately, we do not know whether it is decidable if diftup(M) is finite,
and whether it can be computed if it is finite. We now show that, to determine
whether a dtla M is equivalent to a dtop, it suffices to have an upper bound for
maxdiff(M).

How to Remove the Look-Ahead of Top-Down Tree Transducers 113

Theorem 2. It is decidable for a given total dtlaM and a given difference bound
for M whether there exists a dtop N such that [[M]] = [[N]], and if so, such a
dtop N can be constructed.

Proof. Let M be a (total) dtla and let h(M) be a difference bound for M . We
may, of course, assume that M is a dtpla. By Theorem 1 we may assume that
M is canonical, because h(M) + 8|M|3 is a (computable) difference bound for
can(M).

So, let M be a canonical dtpla and let h(M) be a difference bound for M .
This means that if diftup(M) is finite, then the height of the components of the
difference tuples of M is at most h(M). We now decide whether M is equivalent
to a dtop by constructing td(M) as described before this theorem. However, since
diftup(M) is not given, we construct N = td(M) incrementally, using a variable
QN to accumulate its states (which are all assumed to be reachable). In accor-
dance with Lemma 5 we take QN ⊆ TΔ(QM × PM)n and ϕ((t1, . . . , tn), p̂i) = ti
for i ∈ [n]. We first construct the axiom AN according to Lemma 6 and initialize
the set QN with the states, i.e., the tuples in TΔ(QM ×PM)n, that occur in that
axiom. If the height of one of the components of one of those tuples is larger
than h(M), then either diftup(M) is infinite or that tuple is not a difference
tuple of M , and we stop the construction with answer ‘no’, indicating that M
is not equivalent to any dtop. Then, repeatedly, for every q ∈ QN and a ∈ Σ
we construct rhsN (q, a) according to Lemma 7, and we add to QN the states
that occur in that right-hand side. If the construction of rhsN (q, a) fails or if
the height of one of the components of its states is larger than h(M), then the
answer is ‘no’. If the construction of the dtop N succeeds, then it remains to
test whether M and N are equivalent. ��

In the next example we show that without the tests on height, the construc-
tion may not halt; in such a case it can be viewed as computing an infinite
dtop equivalent to M . In Example 6 the construction of N succeeds and N is
equivalent to M .

Example 5. Consider the dtla M of Example 1. It is easy to see that M is
canonical. In Example 4 we have seen that diftup(M) = {(a, σn〈q, pb〉) | n ∈ N}.

We now apply to M the construction of N in the proof of Theorem 2,
without the tests on height. By Lemma 6, ANΦ = a � 〈q, pb〉 = ⊥ and so
AN = q0(x0) with ϕ(q0, pa) = a and ϕ(q0, pb) = 〈q, pb〉, i.e., q0 = (a, 〈q, pb〉).
Assume now that the algorithm has constructed the state qn with ϕ(qn, pa) = a
and ϕ(qn, pb) = σn〈q, pb〉, i.e., qn is the difference tuple (a, σn〈q, pb〉) of M . By
Lemma 7(1), rhsN (qn, b) = rhsM,ϕ(qn, b) = ϕ(qn, pb)[〈q̄, pb〉 ← rhsM (q̄, b) | q̄ ∈
QM] = ϕ(qn, pb)[〈q, pb〉 ← b] = σnb. Thus,N has the rule qn(b)→ σnb. Similarly,
rhsN (qn, a) = rhsM,ϕ(qn, a) = ϕ(qn, pa) = a and so N has the rule qn(a) → a.
Next, we compute rhsN (qn, σ). To do so we need rhsM,ϕ(qn, σ, p) for every p ∈
PM . For p = pb we have rhsM,ϕ(qn, σ, pb) = ϕ(qn, pb)[〈q, pb〉 ← rhsM (q, σ, pb)] =
σnσq(x1) = σn+1q(x1), and for p = pa we have rhsM,ϕ(qn, σ, pa) = ϕ(qn, pa) = a.
Thus, by Lemma 7(1), rhsN (qn, σ)Φ = a�σn+1〈q, pb〉 = ⊥. Hence, rhsN (qn, σ) =
q(x1) for some q ∈ QN . By Lemma 7(2)(b), ϕ(q, py) = rhsM,ϕ(qn, σ, py)Ω for

114 J. Engelfriet, S. Maneth, and H. Seidl

y ∈ {a, b} and so ϕ(q, pa) = a and ϕ(q, pb) = σn+1〈q, pb〉. Thus, q = qn+1 and
N has the rule qn(σ(x1)) → qn+1(x1). This shows that the construction does
not halt. It can be viewed as constructing the infinite dtop N with QN = {qn |
n ∈ N} = diftup(M), AN = q0(x0) and rules qn(a) → a, qn(b) → σnb and
qn(σ(x1)) → qn+1(x1) for every n ∈ N. Clearly, N is equivalent to M . With a
given difference bound h, the construction halts when constructing qh+1. ��
Example 6. Consider the dtla M of Example 3. As observed after Example 3,
M is canonical. We have seen in Example 4 that diftup(M) consists of the three
4-tuples (a, a, b, b), (a, b, a, b) and (〈qaa, paa〉, 〈qab, pab〉, 〈qba, pba〉, 〈qbb, pbb〉).

We construct N as in the proof of Theorem 2; since maxdiff(M) = 0, the con-
struction is the same for every difference bound h(M). By Lemma 6,AN = q0(x0)
with ϕ(q0, pyz) = 〈qyz, pyz〉 for y, z ∈ {a, b}. Hence, q0 = (〈qaa, paa〉, 〈qab, pab〉,
〈qba, pba〉, 〈qbb, pbb〉). Then Lemma 7(1) implies the equalities rhsN (q0, yz)Φ =
rhsM,ϕ(q0, yz) = ϕ(q0, pyz)[〈qyz , pyz〉 ← rhsM (qyz , yz)] = rhsM (qyz , yz) = yz, so
N has the rules q0(yz)→ yz for all y, z ∈ {a, b}. To compute rhsN (q0, σ), observe
that for everyw, x, y, z ∈ {a, b}, rhsM,ϕ(q0, σ, pwx, pyz) = ϕ(q0, pwz)[〈qwz, pwz〉 ←
rhsM (qwz, σ, pwx, pyz)] = rhsM (qwz, σ, pwx, pyz) = σ(qwx(x1), qyz(x2),#(w, z)).
By Lemma 7(1), rhsN (q0, σ)Φ = σ(⊥,⊥,#(⊥,⊥)). Thus, N may have a rule of
the form

q0(σ(x1, x2))→ σ(q3(xi3), q4(xi4),#(q1(xi1), q2(xi2))).

Let s1 = s2 = aa. From Lemma 7(2)(a) we obtain for v = (3, 1) that

i1 = 1⇐⇒ v ∈ V⊥(�{rhsM,ϕ(q0, σ, pwx, paa)Ψ1M | w, x ∈ {a, b}})
⇐⇒ v ∈ V⊥(�{σ(〈qwx, pwx〉, aa,#(w, a)) | w, x ∈ {a, b}})

if and only if v ∈ V⊥(σ(⊥, aa,#(⊥, a))), which is true. So i1 = 1 and ϕ(q1, pwx) =
w for all w, x ∈ {a, b} by Lemma 7(2)(b). Thus, q1 = (a, a, b, b). Similarly we
obtain for v = (3, 2) that i2 = 2 and ϕ(q2, pyz) = z, for v = 1 that i3 = 1 and
ϕ(q3, pwx) = 〈qwx, pwx〉, and for v = 2 that i4 = 2 and ϕ(q4, pyz) = 〈qyz , pyz〉.
Hence q2 = (a, b, a, b), q3 = q4 = q0 and N has the rule

q0(σ(x1, x2))→ σ(q0(x1), q0(x2),#(q1(x1), q2(x2))).

Next we consider q2. Clearly, both rhsM,ϕ(q2, yz) and rhsM,ϕ(q2, σ, pwx, pyz) equal
z. Thus, N has the rules q2(yz) → z and it may have a rule of the form
q2(σ(x1, x2)) → q(xi). Taking again s1 = s2 = aa, we get that i = 2 if and
only if ε has label ⊥ in �{rhsM,ϕ(q2, σ, paa, pyz) | y, z ∈ {a, b}} if and only if
ε ∈ V⊥(a � b), which is true. So i = 2 and ϕ(q, pyz) = z, which means that
q = q2. Hence, N has the rule q2(σ(x1, x2))→ q2(x2). Similarly it has the rules
q1(yz)→ y and q1(σ(x1, x2))→ q1(x1). So, the construction ends with the dtop
N given at the end of Example 2. ��

5 Conclusion

A dtlaM is linear if no right-hand side of a rule contains the same variable twice,
and nonerasing if no right-hand side of a rule is in Q(X). Our two example dtlas
are both.

How to Remove the Look-Ahead of Top-Down Tree Transducers 115

Theorem 3. It is decidable for a total linear nonerasing dtla M whether there
exists a dtop N such that [[M]] = [[N]], and if so, such a dtop N can be con-
structed.

The proof uses (involved) pumping arguments to show that 37 · |M |5 is a
difference bound for such a dtla M . The same proof holds for dtlas with less
stringent restrictions on copying and erasing: total dtlas that are ultralinear and
bounded erasing, see [7].

We would like to extend the above result to the nontotal case where a dtla
realizes a partial function, to the case where the dtla and the dtop are restricted
to a given regular tree language, and to more general dtlas (preferably to all
dtlas, of course). Even more generally, we would like to have an algorithm that
for a given dtla constructs an equivalent dtla with a minimal number of look-
ahead states.

References

1. Alur, R., D’Antoni, L.: Streaming tree transducers. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 42–53.
Springer, Heidelberg (2012)

2. Berstel, J.: Transductions and Context-Free Languages. Teubner-Verlag (1979)
3. Choffrut, C.: Une caractérisation des fonctions séquentielles et des fonctions sous-

séquentielles en tant que relations rationnelles. Theor. Comput. Sci. 5(3), 325–337
(1977)

4. Drewes, F.: Grammatical Picture Generation – A Tree-Based Approach. Springer
(2006)

5. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Mathematical
Systems Theory 10, 289–303 (1977)

6. Engelfriet, J., Maneth, S., Seidl, H.: Deciding equivalence of top-down XML trans-
formations in polynomial time. J. Comput. Syst. Sci. 75(5), 271–286 (2009)

7. Engelfriet, J., Maneth, S., Seidl, H.: Look-ahead removal for top-down tree trans-
ducers. CoRR abs/1311.2400 (2013)

8. Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. Syst. Sci. 31(1),
71–146 (1985)

9. Ésik, Z.: Decidability results concerning tree transducers I. Acta Cybern. 5, 1–20
(1980)

10. Filiot, E., Servais, F.: Visibly pushdown transducers with look-ahead. In: Bieliková,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 251–263. Springer, Heidelberg (2012)

11. Hosoya, H.: Foundations of XML Processing – The Tree-Automata Approach.
Cambridge University Press (2010)

12. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp.
1–24. Springer, Heidelberg (2005)

13. Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for top-down XML trans-
formations. In: PODS, pp. 285–296 (2010)

14. Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down
tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)

15. Martens, W., Neven, F., Gyssens, M.: Typechecking top-down XML transforma-
tions: Fixed input or output schemas. Inf. Comput. 206(7), 806–827 (2008)

	How to Remove the Look-Ahead of Top-Down Tree Transducers
	1
Introduction
	2
Top-Down Tree Transducers and Difference Trees
	3
Normal Form
	4
Difference Tuples
	5
Conclusion
	References

