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Abstract. We show that the equivalence of linear top-down tree-to-
word transducers is decidable in polynomial time. Linear tree-to-word
transducers are non-copying but not necessarily order-preserving and can
be used to express XML and other document transformations. The result
is based on a partial normal form that provides a basic characterization
of the languages produced by linear tree-to-word transducers.
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1 Introduction

Tree transformations are widely used in functional programming and document
processing. Tree transducers are a general model for transforming structured
data like a database in a structured or even unstructured way. Consider the
following internal representation of a client database that should be transformed
to a table in HTML.

{ {
   name: "Alexander"
   surname: "Walker"
   nickname: "Alex"
   title: "Prof."
   salutation: "Mr."
  }
  ...
}  

<table>
  <tr>  <th> name <\th> 
        <th> surname <\th> 
        <th> nickname <\th> 
        <th> title <\th> 
        <th> salutation <\th> <\tr>
  <tr>  <td> Alexander <\td> 
        <td> Walker <\td> 
        <td> Alex <\td> 
        <td> Prof. <\td> 
        <td> Mr. <\td> <\tr>
  ...
<\table>

Deterministic top-down tree transducers can be seen as functional programs
that transform trees from the root to the leaves with finite memory. Transfor-
mations where the output is not produced in a structured way or where, for
example, the output is a string, can be modeled by tree-to-word transducers.

? This work was partially supported by a grant from CPER Nord-Pas de
Calais/FEDER DATA Advanced data science and technologies 2015-2020
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In this paper, we study deterministic linear tree-to-word transducers (ltws),
a subset of deterministic tree-to-word transducers that are non-copying, but not
necessarily order-preserving. Processing the subtrees in an arbitrary order is
important to avoid reordering of the internal data for different use cases. In the
example of the client database the names may be needed in different formats,
e.g.

<s a l u ta t i o n> <name> <surname>
<surname>, <name>
<t i t l e > <surname>
<t i t l e > <surname>, <name>

The equivalence of unrestricted tree-to-word transducers was a long standing
open problem that was recently shown to be decidable [12]. The algorithm by [12]
provides an co-randomized polynomial algorithm for linear transducers. We show
that the equivalence of ltws is decidable in polynomial time and provide a
partial normal form.

To decide equivalence of ltws, we start in Section 3 by extending the meth-
ods used for sequential (linear and order-preserving) tree-to-word transducers
(stws), discussed in [13]. The equivalence for these transducers is decidable in
polynomial time [13]. Moreover a normal form for sequential and linear tree-to-
word transducers, computable in exponential time, is known [7, 1]. Two equiva-
lent ltws do not necessarily transform their trees in the same order. However,
the differences that can occur are quite specific and characterized in [1]. We
show how they can be identified. We use the notion of earliest states, inspired
by the existing notion of earliest sequential transducers [7]. In this earliest form,
two equivalent stws can transform subtrees in different orders only if they fulfill
specific properties pertaining to the periodicity of the words they create. Com-
puting this normal form is exponential in complexity as the number of states
may increase exponentially. To avoid this size increase we do not compute these
earliest transducers fully, but rather locally. This means we transform two ltws
with different orders to a partial normal form in polynomial time (see Section 4)
where the order of their transformation of the different subtrees are the same.
ltws that transform the subtrees of the input in the same order can be re-
duced to sequential tree-to-word transducers as the input trees can be reordered
according to the order in the transformation.

Due to space constraints some proofs are omitted. The full version of the
paper can be found at http://arxiv.org/abs/1606.03758.

Related Work. Different other classes of transducers, such as tree-to-tree
transducers [5], macro tree transducers [6] or nested-word-to-word transduc-
ers [13] have been studied. Many results for tree-to-tree transducers are known,
e.g. deciding equivalence [10], minimization algorithms [10] and Gold-style learn-
ing algorithms [8]. In contrast, transformations where the output is not gener-
ated in a structured way like a tree are not that well understood. In macro-tree
transducers, the decidability of equivalence is a well-known and long-standing
question [2]. However, the equivalence of linear size increase macro-tree trans-
ducers that are equivalent to MSO definable transducers is decidable [3, 4].
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2 Preliminaries

Let Σ be a ranked alphabet with Σ(n) the symbols of rank n. Trees on Σ (TΣ)
are defined inductively: if f ∈ Σ(n), and t1, ..., tn ∈ TΣ , then f(t1, ..., tn) ∈ TΣ
is a tree. Let ∆ be an alphabet. An element w ∈ ∆∗ is a word. For two words
u, v we denote the concatenation of these two words by uv. The length of a word
w is denoted by |w|. We call ε the empty word. We denote a−1 the inverse of
a symbol a where aa−1 = a−1a = ε. The inverse of a word w = u1 . . . un is
w−1 = u−1n . . . u−11 .

A context-free grammar (CFG) is defined as a tuple (∆,N, S, P ), where ∆ is
the alphabet of G, N is a finite set of non-terminal symbols, S ∈ N is the initial
non-terminal of G, P is a finite set of rules of form A → w, where A ∈ N and
w ∈ (∆∪N)∗. A CFG is deterministic if each non-terminal has at most one rule.

We define the language LG(A) of a non-terminal A recursively: if A →
u0A1u1...Anun is a rule of P , with ui words of ∆∗ and Ai non-terminals of
N , and wi a word of LG(Ai), then u0w1u1...wnun is a word of LG(A). We define
the context-free language LG of a context-free grammar G as LG(S).

A straight-line program (SLP) is a deterministic CFG that produces exactly
one word. The word produced by an SLP (∆,N, S, P ) is called wS .

We denote the longest common prefix of all words of a language L by lcp(L).
Its longest common suffix is lcs(L).

A word u is said to be periodic of period w if w is the smallest word such
that u ∈ w∗. A language L is said to be periodic of period w if w is the smallest
word such that L ⊆ w∗.

A language L is quasi-periodic on the left (resp. on the right) of handle u
and period w if w is the smallest word such that L ⊆ uw∗ (resp. if L ⊆ w∗u).
A language is quasi-periodic if it is quasi-periodic on the right or left. If L is a
singleton or empty, it is periodic of period ε. Iff L is periodic, it is quasi-periodic
on the left and the right of handle ε. If L is quasi-periodic on the left (resp.
right) then lcp(L) (resp. lcs(L)) is the shortest word of L.

3 Linear Tree-to-Word Transducers

A linear tree-to-word transducer (ltw) is a tuple M = (Σ,∆,Q, ax, δ) where
– Σ is a ranked alphabet,
– ∆ is an alphabet of output symbols,
– Q is a finite set of states,
– the axiom ax is of the form u0q(x)u1, where q ∈ Q and u0, u1 ∈ ∆∗,
– δ is a set of rules of the form q, f → u0q1(xσ(1)) . . . qn(xσ(n))un where
q, q1, . . . , qn ∈ Q, f ∈ Σ of rank n, u0, . . . , un ∈ ∆∗ and σ is a permuta-
tion from {1, . . . , n} to {1, . . . , n}. There is at most one rule per pair q, f .

The partial function JMKq of a state q on an input tree f(t1, . . . , tn) is defined
inductively as
– u0JMKq1(tσ(1)) . . . JMKqn(tσ(n))un, if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ
– undefined, if q, f is not defined in δ.
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The partial function JMK of an ltw M with axiom u0q(x)u1 on an input tree t
is defined as JMK(t) = u0JMKq(t)u1.

Two ltws M and M ′ are equivalent if JMK = JM ′K.
A sequential tree-to-word transducer (stw) is an ltw where for each rule of

the form q, f → u0q1(xσ(1))u1 . . . qn(xσ(n))un, σ is the identity on 1 . . . n.

We define accessibility of states as the transitive and reflexive closure of
appearance in a rule. This means state q is accessible from itself, and if q, f →
u0q1(xσ(1)) . . . qn(xσ(n))un, and q is accessible from q′, then all states qi, 1 ≤ i ≤
n, are accessible from q′.

We denote by dom(M) (resp. dom(q)) the domain of an ltw M (resp. a
state q), i.e. all trees t ∈ TΣ such that JMK(t) is defined (resp. JMKq(t)). We
only consider ltws with non-empty domains and assume w.l.o.g. that no state
q in an ltw has an empty domain by eliminating transitions using states with
empty domain.

We denote by LM (resp. Lq) the range of JMK (resp. JMKq), i.e. the set of all
images JMK(t) (resp. JMKq(t)). The languages LM and Lq for each q ∈ Q are all
context-free languages. We call a state q (quasi-)periodic if Lq is (quasi-)periodic.

Note that a word u in a rule of an ltw can be represented by an SLP
without changing the semantics of the ltw. Therefore a set of SLPs is added
to the transducer and a word on the right-hand side of a rule is represented by
an SLPs. The decidability of equivalence of stws in polynomial time still holds
true with the use of SLPs.

The results of this paper require SLP compression to avoid exponential blow-
up. SLPs are used to prevent exponential blow-up in [11], where morphism equiv-
alence on context-free languages is decided in polynomial time.

The equivalence problem for sequential tree-to-word transducer can be re-
duced to the morphism equivalence problem for context-free languages [13]. This
reduction relies on the fact that STWs transform their subtrees in the same or-
der. As ltws do not necessarily transform their subtrees in the same order the
result cannot be applied on ltws in general. However, if two ltws transform
their subtrees in the same order, then the same reduction can be applied. To
formalize that two ltws transform their subtrees in the same order we intro-
duce the notion of state co-reachability. Two states q1 and q2 of ltws M1, M2,
respectively, are co-reachable if there is an input tree such that the two states
are assigned to the same node of the input tree in the translations of M1, M2,
respectively.

Two ltws are same-ordered if for each pair of co-reachable states q1, q2
and for each symbol f ∈ Σ, neither q1 nor q2 have a rule for f , or if q1, f →
u0q
′
1(xσ1(1)) . . . q

′
n(xσ1(n))un and q2, f → v0q

′′
1 (xσ2(1)) . . . q

′′
n(xσ2(n))vn are rules

of q1 and q2, then σ1 = σ2.

If two ltws are same-ordered the input trees can be reordered according to
the order in the transformations. Therefore for each ltw a tree-to-tree transducer
is constructed that transforms the input tree according to the transformation in
the ltw. Then all permutations σ in the ltws are replaced by the identity. Thus
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the ltws can be handled as stws and therefore the equivalence is decidable in
polynomial time [13].

Theorem 1. The equivalence of same-ordered ltws is decidable in polynomial
time.

3.1 Linear Earliest Normal Form

In this section we introduce the two key properties that are used to build a
normal form for linear tree-to-word transducers, namely the earliest and erase-
ordered properties. The earliest property means that the output is produced as
early as possible, i.e. the longest common prefix (resp. suffix) of Lq is produced
in the rule in which q occurs, and as left as possible. The erase-ordered property
means that all states that produce no output are ordered according to the input
tree and pushed to the right in the rules.

An ltw is in earliest form if
– each state q is earliest, i.e. lcp(Lq) = lcs(Lq) = ε,
– and for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, for each i, 1 ≤ i ≤ n,

lcp(Lqiui) = ε.
In [1, Lemma 9] it is shown that for each ltw M an equivalent earliest ltw

M ′ can be constructed in exponential time. Intuitively, if lcp(Lq) = v 6= ε (resp.
lcs(Lq) = v 6= ε) then q′ is constructed with Lq′ = v−1Lq (resp. Lq′ = Lqv

−1)
and q(x) is replaced by vq′(x) (resp. q′(x)v). If lcp(Lqu) = v 6= ε and v is a prefix
of u = vv′ then we push v through Lq by constructing q′ with Lq′ = v−1Lqv and
replace q(x)u by vq′(x)v′.

Note that the construction to build the earliest form M ′ of an ltwM creates
a same-ordered M ′. Furthermore, if a state q of M and a state q′ of M ′ are co-
reachable, then q′ is an “earliest” version of q, where some word u was pushed
out of the production of q to make it earliest, and some word v was pushed
through the production of q to ensure that the rules have the right property:
there exists u, v ∈ ∆∗ such that for all t ∈ dom(q), JM ′Kq′(t) = v−1u−1JMKq(t)v.

Theorem 2. For each ltw an equivalent same-ordered and earliest ltw can
be constructed in exponential time.

The exponential time complexity is caused by a potential exponential size
increase in the number of states as it is shown in [7, Example 5].

We call a state q that produces only the empty word, i.e. Lq = {ε}, an erasing
state. As erasing states do not change the transformation and can occur at any
position in a rule we need to fix their position for a normal form.

An ltw M is erase-ordered if for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
in M , if qi is erasing then for all j ≥ i, qj is erasing, σ(i) ≤ σ(j) and uj = ε.

We test whether Lq = {ε} in polynomial time and then reorder a rule ac-
cording to the erase-ordered property. If an ltw is earliest it is still earliest after
the reordering.

Lemma 3 (extended from [1, Lemma 18]). For each (earliest) ltw an
equivalent (earliest) erase-ordered ltw can be constructed in polynomial time.
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Example 4. Consider the rule q0, f → q1(x4)q2(x3)q1(x2)q4(x1) where q2 trans-
lates trees of the form fn(g), n ≥ 0 to (abc)n, q4 translates trees of the form
fn(g), n ≥ 0 to (abc)2n, q1 translates trees of the form fn(g), n ≥ 0 to ε. Thus
the rule is not erase-ordered. We reorder the rule to the equivalent and erase-
ordered rule q0, f → q2(x3)q4(x1)q1(x2)q1(x4).

If two equivalent ltws are earliest and erase-ordered, then they are not nec-
essarily same-ordered. For example, the rule q, f → q4(x1)q2(x3)q1(x2)q1(x4) is
equivalent to the rule in the above example but the two rules are not same-
ordered. However, in earliest and erase-ordered ltws, we can characterize the
differences in the orders of equivalent rules: Just as two words u, v satisfy the
equation uv = vu if and only if there is a word w such that u ∈ w∗ and v ∈ w∗,
the only way for equivalent earliest and erase-ordered ltws to not be same-
ordered is to switch periodic states.

Theorem 5 ([1]). Let M and M ′ be two equivalent erase-ordered and earliest
ltws and q, q′ be two co-reachable states in M , M ′, respectively. Let
q, f → u0q1(xσ1(1)) . . . qn(xσ1(n))un and q′, f → v0q

′
1(xσ2(1)) . . . q

′
n(xσ2(n))vn

be two rules for q, q′. Then
– for k < l such that σ1(k) = σ2(l), all qi, k ≤ i ≤ l, are periodic of the same

period and all uj = ε, k ≤ j < l,
– for k, l such that σ1(k) = σ2(l), JMKqk = JM ′Kq′l .

As the subtrees that are not same-ordered in two equivalent earliest and
erase-ordered states are periodic of the same period the order of these can be
changed without changing the semantics. Therefore the order of these subtrees
can be fixed such that equivalent earliest and erase-ordered ltws are same-
ordered. Then the equivalence is decidable in polynomial time, see Theorem 1.
However, building the earliest form of an ltw is in exponential time.

To circumvent this difficulty, we will show that the first part of Theorem 5
still holds even on a partial normal form, where only quasi-periodic states are
earliest and the longest common prefix of parts of rules q(x)u with Lqu being
quasi-periodic is the empty word.

Theorem 6. Let M and M ′ be two equivalent erase-ordered ltws such that
– all quasi-periodic states q are earliest, i.e. lcp(q) = lcs(q) = ε
– for each part q(x)u of a rule where Lqu is quasi-periodic, lcp(Lqu) = ε

Let q, q′ be two co-reachable states in M , M ′, respectively and
q, f → u0q1(xσ1(1)) . . . qn(xσ1(n))un and q′, f → v0q

′
1(xσ2(1)) . . . q

′
n(xσ2(n))vn

be two rules for q, q′. Then for k < l such that σ1(k) = σ2(l), all qi, k ≤ i ≤ l,
are periodic of the same period and all uj = ε, k ≤ j < l.

4 Partial Normal Form

In this section we introduce a partial normal form for ltws that does not suffer
from the exponential blow-up of the earliest form. Inspired by Theorem 6, we
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wish to solve order differences by switching adjacent periodic states of the same
period. Remember that the earliest form of a state q is constructed by removing
the longest common prefix (suffix) of Lq to produce this prefix (suffix) earlier.
It follows that all non-earliest states from which q can be constructed following
the earliest form are quasi-periodic.

We show that building the earliest form of a quasi-periodic state or a part
of a rule q(x)u with Lqu being quasi-periodic is in polynomial time. Therefore
building the following partial normal form is in polynomial time.

Definition 7. A linear tree-to-word transducer is in partial normal form if
1. all quasi-periodic states are earliest,
2. it is erase-ordered and
3. for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un if LqiuiLqi+1 is quasi-periodic

then qi(xσ(i))uiqi+1(xσ(i+1)) is earliest and σ(i) < σ(i+ 1).

4.1 Eliminating Non-Earliest Quasi-Periodic States

In this part, we show a polynomial time algorithm to build an earliest form
of a quasi-periodic state. From which an equivalent ltw can be constructed in
polynomial time such that any quasi-periodic state is earliest, i.e. lcp(Lq) =
lcs(Lq) = ε. Additionally, we show that the presented algorithm can be adjusted
to test if a state is quasi-periodic in polynomial time.

As quasi-periodicity on the left and on the right are symmetric properties we
only consider quasi-periodic states of the form uw∗ (quasi-periodic on the left).
The proofs in the case w∗u are symmetric and therefore omitted here. In the end
of this section we shortly discuss the introduced algorithms for the symmetric
case w∗u.

To build the earliest form of a quasi-periodic state we use the property that
each state accessible from a quasi-periodic state is as well quasi-periodic. How-
ever, the periods can be shifted as the following example shows.

Example 8. Consider states q, q1 and q2 with rules q, f → aq1(x1)c, q1, f →
aaq2(x1)ab, q2, f → q2(x1)abc, q2, g → abc. State q accepts trees of the form
fn(g), n ≥ 2, and produces the language aaa(abc)n, i.e. q is quasi-periodic of
period abc. State q1 accepts trees of the form fn(g), n ≥ 1, and produces the
language aa(abc)nab, i.e. q1 is quasi-periodic of period cab. State q2 accepts
trees of the form fn(g), n ≥ 0 and produces the language (abc)n+1, i.e. q2 is
(quasi-)periodic of period abc.

We introduce two definitions to measure the shift of periods. We denote by
ρn [u] the from right-to-left shifted word of u of shift n, n ≤ |u|, i.e. ρn [u] =
u′−1uu′ where u′ is the prefix of u of size n. If n ≥ |u| then ρn[u] = ρm[u] with
m = n mod |u|.

For two quasi-periodic states q1, q2 of period u = u1u2 and u′ = u2u1,
respectively, we denote the shift in their period by s(q1, q2) = |u1|.

The size of the periods of a quasi-periodic state and the states accessible from
this state can be computed from the size of the shortest words of the languages
produced by these states.
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Lemma 9. If q is quasi-periodic on the left with period w, and q′ accessible
from q, then q′ is quasi-periodic with period ε or a shift of w. Moreover we can
calculate the shift s(q, q′) in polynomial time.

We now use these shifts to build, for a state q in M that is quasi-periodic on
the left, a transducer Mq equivalent to M where each occurrence of q is replaced
by its equivalent earliest form, i.e. a periodic state and the corresponding prefix.

Algorithm 1. Let q be a state in M that is quasi-periodic on the left. Mq starts
with the same states, axiom, and rules as M .

– For each state p accessible from q, we add a copy pe to Mq.
– For each rule p, f → u0q1(xσ(1)) . . . qn(xσ(n))un in M with p accessible

from q, we add a rule pe, f → upq
e
1(xσ(1))q

e
2(xσ(2)) . . . q

e
n(xσ(n)) with up =

ρs(q,p)
[
lcp(p)−1u0lcp(q1) . . . lcp(qn)un

]
in Mq.

– We delete state q in Mq and replace any occurrence of q(x) in a rule or the
axiom of Mq by lcp(q)qe(x).

Note that lcp(p)−1u0lcp(q1) . . . lcp(qn)un is equivalent to deleting the prefix of
size |lcp(p)| from the word u0lcp(q1) . . . lcp(qn)un.

Intuitively, to build the earliest form of a state q that is quasi-periodic on
the left we need to push all words and all longest common prefixes of states
on the right-hand side of a rule of q to the left. Pushing a word to the left
through a state needs to shift the language produced by this state. We explain
the algorithm in detail on state q from Example 8.

Example 10. Remember that q produces the language aaa(abc)n, n ≥ 2 and q1,
q2 accessible from q produce languages aa(abc)nab, n ≥ 1 and (abc)n+1, n ≥ 0,
respectively. Therefore lcp(q) = aaaabcabc, lcp(q1) = aaabcab and lcp(q2) = abc.
We start with state q. As there is only one rule for q the longest common prefix
of q and the longest common prefix of this rule are the same and therefore
eliminated.

qe, f → ρs(q,q)[lcp(q)−1alcp(q1)c]qe1(x1)

→ ρs(q,q)[(aaaabcabc)
−1aaaabcabc]qe1(x1)

→ qe1(x1)
As there is only one rule for q1 the argumentation is the same and we get
qe1, f → qe2. For the rule q2, f we calculate the longest common prefix of the
right-hand side lcp(q2)abc = abcabc that is larger than the longest common prefix
of q2. Therefore we need to calculate the shift s(q, q2) = s(q, q1) + s(q1, q2) =
|c|+ |ab| = 3 as q1 is accessible from q in rule q, f and q2 is accessible from q1 in
rule q1, f . This leads to the following rule.

qe2, f → ρs(q,q2)[lcp(q2)−1lcp(q2)abc]qe2(x1)

→ ρ3[(abc)−1abcabc]qe2(x1)

→ abcqe2(x1)
As the longest common prefix of q2 is the same as the longest common pre-
fix of the right-hand side of rule q2, g we get qe2, g → ε. The axiom of Mq is
lcp(q)qe(x1) = aaaabcabcqe(x1).
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Lemma 11. Let M be an ltw and q be a state in M that is quasi-periodic on
the left. Let Mq be constructed by Algorithm 1 and pe be a state in Mq accessible
from qe. Then M and Mq are equivalent and pe is earliest.

To replace all quasi-periodic states by their equivalent earliest form we need
to know which states are quasi-periodic. Algorithm 1 can be modified to test
an arbitrary state for quasi-periodicity on the left in polynomial time. The only
difference to Algorithm 1 is that we do not know how to compute lcp(p) in
polynomial time and s(q, p) does not exist. We therefore substitute lcp(p) by
some smallest word of Lp and we define a mock-shift s′(q, p) as follows
– s′(q, q) = 0 for all q,
– if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, we say s′(q, qi) = |uiwqi+1 . . . wqnun|,

where wq is a shortest word of Lq,
– if s′(q1, q2) = n and s′(q2, q3) = m then s′(q1, q3) = n+m.

If several definitions of s′(q, p) exist, we use the smallest. If p is accessible from
a quasi-periodic q, then s′(q, p) = s(q, p).

Algorithm 2. Let M = (Σ,∆,Q, ax, δ) be an ltw and q be a state in M . We
build an ltw T q as follows.
– For each state p accessible from q, we add a copy pe to T q.
– The axiom is wqq

e(x) where wq is a shortest word of Lq.
– For each rule p, f → u0q1(xσ(1)) . . . qn(xσ(n))un in M with p accessible from
q, we add a rule

pe, f → upq
e
1(xσ(1))q

e
2(xσ(2)) . . . q

e
n(xσ(n))

in T q, where up is constructed as follows.
• We define u = u0w1 . . . wnun, where wi is a shortest word of Lqi .
• Then we remove from u its prefix of size |w′|, where w′ is a shortest word

of Lp. We obtain a word u′.
• Finally, we set up = ρs′(q,p)[u

′].

As the construction of Algorithms 1 and 2 are the same if the state q is
quasi-periodic, JMKq and JT qK are equivalent if q is quasi-periodic. Moreover, q
is quasi-periodic if JMKq and JT qK are equivalent.

Lemma 12. Let q be a state of an ltwM and T q be constructed by Algorithm 2.
Then M and T q are same-ordered and q is quasi-periodic on the left if and only
if JMKq = JT qK and qe is periodic.

As M and T q are same-ordered we can test the equivalence in polynomial
time, cf. Theorem 1. Moreover testing a CFG for periodicity is in polynomial
time and therefore testing a state for quasi-periodicity is in polynomial time.

Algorithm 2 can be applied to a part q(x)u of a rule to test Lqu for quasi-
periodicity on the left. In this case for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
a rule q̂, f → u0q1(xσ(1)) . . . qn(xσ(n))unu is added to M and each occurrence
of the part q(x)u in a rule of M is replaced by q̂(x). We then apply the above
algorithm to q̂ and test JMKq̂ and JT q̂K for equivalence and q̂e for periodicity.
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We introduced algorithms to test states for quasi-periodicity on the left and
to build the earliest form for such states. These two algorithms can be adapted
for states that are quasi-periodic on the right. There are two main differences.
First, as the handle is on the right the shortest word of a language L that is
quasi-periodic on the right is lcs(L). Second, instead of pushing words through a
periodic language to the left we need to push words through a periodic language
to the right.

Hence, we can test each state q of an ltw M for quasi-periodicity on the
left and right. If the state is quasi-periodic we replace q by its earliest form.
Algorithm 1 and 2 run in polynomial time if SLPs are used. This is crucial as
the shortest word of a CFG can be of exponential size. However, the operations
that are needed in the algorithms, namely constructing the shortest word of a
CFG and removing the prefix or suffix of a word, are in polynomial time using
SLPs, cf. [9].

Theorem 13. Let M be an ltw. Then an equivalent ltw M ′ where all quasi-
periodic states are earliest can be constructed in polynomial time.

4.2 Switching Periodic States

In this part we obtain the partial normal form by ordering periodic states of an
erase-ordered transducer where all quasi-periodic states are earliest. Ordering
means that if the order of the subtrees in the translation can differ, we choose
the one similar to the input, i.e. if q(x3)q′(x1) and q′(x1)q(x3) are equivalent,
we choose the second order. We already showed how we can build a transducer
where each quasi-periodic state is earliest and therefore periodic. However, we
need to make parts of rules earliest such that periodic states can be switched as
the following example shows.

Example 14. Consider the rule q, h→ q1(x2)bq2(x1) where q1, q2 have the rules
q1, f → bcabcaq1(x), q1, g → ε, q2, f → cabq2(x), q2, g → ε. States q1 and q2
are earliest and periodic but not of the same period as a subword is produced
in between. We replace the non-earliest and quasi-periodic part q1(x2)b by their
earliest form. This leads to q, h → bqe1(x2)q2(x1) with qe1, f → cabcabqe1(x),
qe1, g → ε. Hence, qe1 and q2 are earliest and periodic of the same period and can
be switched in the rule.

To build the earliest form of a quasi-periodic part of a rule q(x)u each
occurrence of this part is replaced by a state q̂(x) and for each rule q, f →
u0q1(xσ(1)) . . . qn(xσ(n))un a rule q̂, f → u0q1(xσ(1)) . . . qn(xσ(n))unu is added.
Then we apply Algorithm 1 on q̂ to replace q̂ and therefore q(x)u by their earli-
est form. Iteratively this leads to the following theorem.

Theorem 15. For each ltw M where all quasi-periodic states are earliest we
can build in polynomial time an equivalent ltw M ′ such that each part q(x)u of
a rule in M where Lqu is quasi-periodic is earliest.
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In Theorem 6 we showed that order differences in equivalent erase-ordered
ltws where all quasi-periodic states are earliest and all parts of rules q(x)u are
earliest are caused by adjacent periodic states. As these states are periodic of the
same period and no words are produced in between these states can be reordered
without changing the semantics of the ltws.

Lemma 16. Let M be an ltw such that
– M is erase-ordered,
– all quasi-periodic states in M are earliest and
– each qi(xσ(i))ui in a rule of M that is quasi-periodic is earliest.

Then we can reorder adjacent periodic states qi(xσ(i))qi+1(xσ(i+1)) of the same
period in the rules of M such that σ(i) < σ(j) in polynomial time. The reordering
does not change the transformation of M .

We showed before how to construct a transducer with the preconditions
needed in Lemma 16 in polynomial time. Note that replacing a quasi-periodic
state by its earliest form can break the erase-ordered property. Thus we need
to replace all quasi-periodic states by its earliest form before building the erase-
ordered form of a transducer. Then Lemma 16 is the last step to obtain the
partial normal form for an ltw.

Theorem 17. For each ltw we can construct an equivalent ltw that is in
partial normal form in polynomial time.

4.3 Testing Equivalence in Polynomial Time

It remains to show that the equivalence problem of ltws in partial normal form
is decidable in polynomial time. The key idea is that two equivalent ltws in
partial normal form are same-ordered.

Consider two equivalent ltws M1, M2 where all quasi-periodic states and
all parts of rules q(x)u with Lqu is quasi-periodic are earliest. In Theorem 6 we
showed if the orders σ1, σ2 of two co-reachable states q1, q2 of M1, M2, respec-
tively, for the same input differ then the states causing this order differences
are periodic with the same period. The partial normal form solves this order
differences such that the transducers are same-ordered.

Lemma 18. If M and M ′ are equivalent and in partial normal form then they
are same-ordered.

As the equivalence of same-ordered ltws is decidable in polynomial time (cf.
Theorem 1) we conclude the following.

Corollary 19. The equivalence problem for ltws in partial normal form is
decidable in polynomial time.

To summarize, the following steps run in polynomial time and transform a
ltw M into its partial normal form.
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1. Test each state for quasi-periodicity. If it is quasi-periodic replace the state
by its earliest form.

2. Build the equivalent erase-ordered transducer.
3. Test each part q(x)u in each rule from right to left for quasi-periodicity on

the left. If it is quasi-periodic replace the part by its earliest form.
4. Order adjacent periodic states of the same period according to the input

order.
This leads to our main theorem.

Theorem 20. The equivalence of ltws is decidable in polynomial time.
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