22 research outputs found

    Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing) and pathological conditions (tumour development). Vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF) are the major angiogenic regulators. We have identified a natural product (cheiradone) isolated from a <it>Euphorbia </it>species which inhibited <it>in vivo </it>and <it>in vitro </it>VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in <it>in vitro </it>(proliferation, wound healing, invasion in Matrigel and tube formation) and <it>in vivo </it>(the chick chorioallantoic membrane) models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC<sub>50</sub>) was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated.</p> <p>Results</p> <p>Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC<sub>50 </sub>values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC<sub>50 </sub>values of 2.9 and 0.61 μM respectively.</p> <p>Conclusion</p> <p>Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.</p

    Aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract in vitro

    Get PDF
    Protein glycation involves formation of early (Amadori) and late advanced glycation endproducts (AGEs) together with free radicals via autoxidation of glucose and Amadori products. Glycation and increased free radical activity underlie the pathogenesis of diabetic complications. This study investigated whether aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract in vitro in a cell-free system. Proteins were glycated by incubation with sugars (glucose, methylglyoxal or ribose) ±5–15 mg/mL of aged and fresh garlic extracts. Advanced glycation endproducts were measured using SDS-PAGE gels and by ELISA whereas Amadori products were assessed by the fructosamine method. Colorimetric methods were used to assess antioxidant activity, free radical scavenging capacity, protein-bound carbonyl groups, thiol groups and metal chelation activities in addition to phenolic, total flavonoid and flavonol content of aged and fresh garlic extracts. Aged garlic inhibited AGEs by 56.4% compared to 33.5% for an equivalent concentration of fresh garlic extract. Similarly, aged garlic had a higher total phenolic content (129 ± 1.8 mg/g) compared to fresh garlic extract (56 ± 1.2 mg/g). Aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract and is more suitable for use in future in vivo studies

    In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I’yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Methods Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Results Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of the extracts did not correlate with the total phenolic, total flavonoid, FRAP or DPPH. For ACE inhibition, IC50 values ranged between 266.27 ± 6.91 to 695.17 ± 15.38 μg/mL. Conclusions The tested Australian medicinal plant extracts inhibit glucose-induced fluorescent AGEs, α-amylase, α-glucosidase and ACE with extracts of Petalostigma species showing the most promising activity. These medicinal plants could potentially be further developed as therapeutic agents in the treatment of hyperglycaemia and hypertension

    Antiglycation and antioxidant properties of Momordica charantia

    Get PDF
    The accumulation of advanced glycation endproducts (AGEs) and oxidative stress underlie the pathogenesis of diabetic complications. In many developing countries, diabetes treatment is unaffordable, and plants such as bitter gourd (or bitter melon; Momordica charantia) are used as traditional remedies because they exhibit hypoglycaemic properties. This study compared the antiglycation and antioxidant properties of aqueous extracts of M. charantia pulp (MCP), flesh (MCF) and charantin in vitro. Lysozyme was mixed with methylglyoxal and 0–15 mg/ml of M. charantia extracts in a pH 7.4 buffer and incubated at 37°C for 3 days. Crosslinked AGEs were assessed using gel electrophoresis, and the carboxymethyllysine (CML) content was analyzed by enzyme-linked immunosorbent assays. The antioxidant activities of the extracts were evaluated using assays to assess DPPH (1,1-diphenyl-2-picryl-hydrazyl) and hydroxyl radical scavenging activities, metal-chelating activity and reducing power of the extracts. The phenolic, flavonol and flavonoid content of the extracts were also determined. All extracts inhibited the formation of crosslinked AGEs and CML in a dose-dependent manner, with MCF being the most potent. The antioxidant activity of MCF was higher than that of MCP, but MCP showed the highest metal-chelating activity. MCF had the highest phenolic and flavonoid contents, whereas MCP had the highest flavonol content. M. charantia has hypoglycaemic effects, but this study shows that M. charantia extracts are also capable of preventing AGE formation in vitro. This activity may be due to the antioxidant properties, particularly the total phenolic content of the extracts. Thus, the use of M. charantia deserves more attention, as it may not only reduce hyperglycaemia but also protect against the build-up of tissue AGEs and reduce oxidative stress in patients with diabetes

    () Cheiradone inhibits EC differentiation into capillary like structures on Matrigel

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Cheiradone: a vascular endothelial cell growth factor receptor antagonist"</p><p>http://www.biomedcentral.com/1471-2121/9/7</p><p>BMC Cell Biology 2008;9():7-7.</p><p>Published online 29 Jan 2008</p><p>PMCID:PMC2248182.</p><p></p> Cells were treated with either cheiradone (control, 0–3.85 μM) or cheiradone (0–3.85 μM) with VEGF (10 ng/ml). Values significantly different from VEGF alone (p < 0.05) are shown by *. () Representative photomicrographs show; HDMEC, HDMEC treated with cheiradone; 7.7 μM, HDMEC treated with VEGF 10 ng/ml, HDMEC treated with VEGF and cheiradone, 7.7 μM. Experiments were performed and the number of closed tubes was determined as described above. Results are the mean of three experiments. Incomplete tube formation was noted in the presence of cheiradone () but extensive tube formation with VEGF (). In the presence of cheiradone the effect of VEGF was abolished ()

    Investigation of the cytotoxic effect of cheiradone on BAEC and HDMEC viability

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Cheiradone: a vascular endothelial cell growth factor receptor antagonist"</p><p>http://www.biomedcentral.com/1471-2121/9/7</p><p>BMC Cell Biology 2008;9():7-7.</p><p>Published online 29 Jan 2008</p><p>PMCID:PMC2248182.</p><p></p> The cytotoxic effect of cheiradone was determined using (MTT assay and () Active-caspase-3 apoptosis assay. Cells were incubated with cheiradone and staurosporine (1.4 μM) for 24 h. Values significantly different from the control (DMSO) are shown by *. Immunofluorescence photomicrographs for HMDEC were taken as described above and show. () control, DMSO (taurosporine, the arrow indicates a positively stained apoptotic cell and () cheiradone
    corecore