5,896 research outputs found
Sonoluminescing air bubbles rectify argon
The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the
percentage of inert gas within the bubble. We propose a theory for this
dependence, based on a combination of principles from sonochemistry and
hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent
reaction to water soluble gases implies that strongly forced air bubbles
eventually consist of pure argon. Thus it is the partial argon (or any other
inert gas) pressure which is relevant for stability. The theory provides
quantitative explanations for many aspects of SBSL.Comment: 4 page
Solving 3+1 QCD on the Transverse Lattice Using 1+1 Conformal Field Theory
A new transverse lattice model of Yang-Mills theory is constructed by
introducing Wess-Zumino terms into the 2-D unitary non-linear sigma model
action for link fields on a 2-D lattice. The Wess-Zumino terms permit one to
solve the basic non-linear sigma model dynamics of each link, for discrete
values of the bare QCD coupling constant, by applying the representation theory
of non-Abelian current (Kac-Moody) algebras. This construction eliminates the
need to approximate the non-linear sigma model dynamics of each link with a
linear sigma model theory, as in previous transverse lattice formulations. The
non-perturbative behavior of the non-linear sigma model is preserved by this
construction. While the new model is in principle solvable by a combination of
conformal field theory, discrete light-cone, and lattice gauge theory
techniques, it is more realistically suited for study with a Tamm-Dancoff
truncation of excited states. In this context, it may serve as a useful
framework for the study of non-perturbative phenomena in QCD via analytic
techniques.Comment: 25 page
Recommended from our members
Dynamic MAIT cell response with progressively enhanced innateness during acute HIV-1 infection.
Mucosa-associated invariant T (MAIT) cell loss in chronic HIV-1 infection is a significant insult to antimicrobial immune defenses. Here we investigate the response of MAIT cells during acute HIV-1 infection utilizing the RV217 cohort with paired longitudinal pre- and post-infection samples. MAIT cells are activated and expand in blood and mucosa coincident with peak HIV-1 viremia, in a manner associated with emerging microbial translocation. This is followed by a phase with elevated function as viral replication is controlled to a set-point level, and later by their functional decline at the onset of chronic infection. Interestingly, enhanced innate-like pathways and characteristics develop progressively in MAIT cells during infection, in parallel with TCR repertoire alterations. These findings delineate the dynamic MAIT cell response to acute HIV-1 infection, and show how the MAIT compartment initially responds and expands with enhanced function, followed by progressive reprogramming away from TCR-dependent antibacterial responses towards innate-like functionality
Proton induced thermal stress-wave measurements using a Laser Doppler Vibrometer
Abstract.: Thermal stress-waves are generated in the solid target material when the proton beam interacts. These stress waves excite natural oscillations of the target or cause plastic deformations. Hence, an experimental setup with a laser Doppler vibrometer [CITE] was developed to investigate free surface vibrations of cylindrical targets. The target configurations for RIB and conventional neutrino beams (CNGS project) were investigated to analyze proton induced thermal stress-wave generation and propagatio
Dynamics of the Light-Cone Zero Modes: Theta Vacuum of the Massive Schwinger Model
The massive Schwinger model is quantized on the light cone with great care on
the bosonic zero modes by putting the system in a finite (light-cone) spatial
box. The zero mode of survives Dirac's procedure for the constrained
system as a dynamical degree of freedom. After regularization and quantization,
we show that the physical space condition is consistently imposed and relates
the fermion Fock states to the zero mode of the gauge field. The vacuum is
obtained by solving a Schr\"odinger equation in a periodic potential, so that
the theta is understood as the Bloch momentum. We also construct a one-meson
state in the fermion-antifermion sector and obtained the Schr\"odinger equation
for it.Comment: 23 pages, RevTex, no figure
Computational Results for the KTH-NASA Wind-Tunnel Model Used for Acquisition of Transonic Nonlinear Aeroelastic Data
A status report is provided on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the aeroelastic analyses of a full-span fighter configuration wind-tunnel model. This wind-tunnel model was tested in the Transonic Dynamics Tunnel (TDT) in the summer of 2016. Large amounts of data were acquired including steady/unsteady pressures, accelerations, strains, and measured dynamic deformations. The aeroelastic analyses presented include linear aeroelastic analyses, CFD steady analyses, and analyses using CFD-based reduced-order models (ROMs)
Future perspectives on automotive CAE
Computer Aided Engineering (CAE) is an integral part of today’s automotive design process. Very often OEM’s rely solely on software vendors to provide appropriate solutions. On the other hand, some companies still use in-house developed software for specific applications. It is, however, a combination of these two approaches that provides OEM’s with optimal leading edge software technology. This paper will present an overview of several relevant automotive CAE-methods that will illustrate this approach. Four important automotive software areas will be considered: vehicle CFD applications, aeroacoustics, vehicle crash analysis and occupant / pedestrian safety. The first two topics, CFD and aeroacoustics, are extensive subject areas in themselves, but will be dealt with by considering two specific topics, namely, numerical aerodynamic / flow optimization and aeroacoustic sound propagation into vehicle cabins, respectively. A more detailed focus will be placed on the two safety application areas: vehicle crash analysis and occupant safety using Human Body Models
Zero Mode and Symmetry Breaking on the Light Front
We study the zero mode and the spontaneous symmetry breaking on the light
front (LF). We use the discretized light-cone quantization (DLCQ) of
Maskawa-Yamawaki to treat the zero mode in a clean separation from all other
modes. It is then shown that the Nambu-Goldstone (NG) phase can be realized on
the trivial LF vacuum only when an explicit symmetry-breaking mass of the NG
boson is introduced. The NG-boson zero mode integrated over the LF
must exhibit singular behavior in the symmetric limit
, which implies that current conservation is violated at zero
mode, or equivalently the LF charge is not conserved even in the symmetric
limit. We demonstrate this peculiarity in a concrete model, the linear sigma
model, where the role of zero-mode constraint is clarified. We further compare
our result with the continuum theory. It is shown that in the continuum theory
it is difficult to remove the zero mode which is not a single mode with measure
zero but the accumulating point causing uncontrollable infrared singularity. A
possible way out within the continuum theory is also suggested based on the
`` theory''. We finally discuss another problem of the zero mode in the
continuum theory, i.e., no-go theorem of Nakanishi-Yamawaki on the
non-existence of LF quantum field theory within the framework of Wightman
axioms, which remains to be a challenge for DLCQ, `` theory'' or any other
framework of LF theory.Comment: 60 pages, the final section has been expanded. A few minor
corrections; version to be published in Phys. Rev.
Renormal-order improvement of the Schwinger mass
The massive Schwinger model may be analysed by a perturbation expansion in
the fermion mass. However, the results of this mass perturbation theory are
sensible only for sufficiently small fermion mass. By performing a
renormal-ordering, we arrive at a chiral perturbation expansion where the
expansion parameter remains small even for large fermion mass. We use this
renormal-ordered chiral perturbation theory for a computation of the Schwinger
mass and compare our results with lattice computations.Comment: Latex file, 13 pages, 3 figures, needed macro: psbox.te
Light-front Schwinger Model at Finite Temperature
We study the light-front Schwinger model at finite temperature following the
recent proposal in \cite{alves}. We show that the calculations are carried out
efficiently by working with the full propagator for the fermion, which also
avoids subtleties that arise with light-front regularizations. We demonstrate
this with the calculation of the zero temperature anomaly. We show that
temperature dependent corrections to the anomaly vanish, consistent with the
results from the calculations in the conventional quantization. The gauge
self-energy is seen to have the expected non-analytic behavior at finite
temperature, but does not quite coincide with the conventional results.
However, the two structures are exactly the same on-shell. We show that
temperature does not modify the bound state equations and that the fermion
condensate has the same behavior at finite temperature as that obtained in the
conventional quantization.Comment: 10 pages, one figure, version to be published in Phys. Rev.
- …
