2,641 research outputs found

    Inhibition Of Mitochondrial Permeability Transition By Low Ph Is Associated With Less Extensive Membrane Protein Thiol Oxidation.

    Get PDF
    Ca2+ and inorganic phosphate-induced mitochondrial swelling and membrane protein thiol oxidation, which are associated with mitochondrial permeability transition, are inhibited by progressively decreasing the incubation medium pH between 7.2 and 6.0. Nevertheless, the detection of mitochondrial H2O2 production under these conditions is increased. Permeability transition induced by phenylarsine oxide, which promotes membrane protein thiol cross-linkage in a process independent of Ca2+ or reactive oxygen species, is also strongly inhibited in acidic incubation media. In addition, we observed that the decreased protein thiol reactivity with phenylarsine oxide or phenylarsine oxide-induced swelling at pH 6.0 is reversed by diethyl pyrocarbonate, in a hydroxylamine-sensitive manner. These results provide evidence that the inhibition of mitrochondrial permeability transition observed at lower incubation medium pH is mediated by a decrease in membrane protein thiol reactivity, related to the protonation of protein histidyl residues.19525-3

    Respiration, Oxidative Phosphorylation, And Uncoupling Protein In Candida Albicans.

    Get PDF
    The respiration, membrane potential (Deltapsi), and oxidative phosphorylation of mitochondria in situ were determined in spheroplasts obtained from Candida albicans control strain ATCC 90028 by lyticase treatment. Mitochondria in situ were able to phosphorylate externally added ADP (200 microM) in the presence of 0.05% BSA. Mitochondria in situ generated and sustained stable mitochondrial Deltapsi respiring on 5 mM NAD-linked substrates, 5 mM succinate, or 100 microM N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride plus 1 mM ascorbate. Rotenone (4 microM) inhibited respiration by 30% and 2 micro M antimycin A or myxothiazole and 1 mM cyanide inhibited it by 85%. Cyanide-insensitive respiration was partially blocked by 2 mM benzohydroxamic acid, suggesting the presence of an alternative oxidase. Candida albicans mitochondria in situ presented a carboxyatractyloside-insensitive increase of Deltapsi induced by 5 mM ATP and 0.5% BSA, and Deltapsi decrease induced by 10 microM linoleic acid, both suggesting the existence of an uncoupling protein. The presence of this protein was subsequently confirmed by immunodetection and respiration experiments with isolated mitochondria. In conclusion, Candida albicans ATCC 90028 possesses an alternative electron transfer chain and alternative oxidase, both absent in animal cells. These pathways can be exceptional targets for the design of new chemotherapeutic agents. Blockage of these respiratory pathways together with inhibition of the uncoupling protein (another potential target for drug design) could lead to increased production of reactive oxygen species, dysfunction of Candida mitochondria, and possibly to oxidative cell death.371455-6

    Almond witches’-broom phytoplasma (Candidatus Phytoplasma phoenicium): a real threat to almond, peach and nectarine.

    Get PDF
    Within less than a decade, Almond witches’-broom (AlmWB) phytoplasma killed over a hundred thousand almond trees in Lebanon (Abou-Jawdah et al., 2002). AlmWB belongs to the pigeon pea witches’ broom group (16SrIX), and the scientific name (Candidatus Phytoplasma phoenicium) was suggested (Verdin et al., 2003). Grafting experiments revealed that AlmWB may also affect peaches and nectarines (Abou-Jawdah et al, 2003). Later on, a similar disease was reported in Iran (Verdin et al., 2003; Salehi et al., 2006). This disease is still spreading on almond trees to new areas in North Lebanon, but more recently shoot proliferation with succulent small light green leaves were observed on peach and nectarine in South Lebanon, where the disease seemed to be spreading relatively fast. DNA sequencing showed over 99% sequence homology with AlmWB (Abou-Jawdah et al. 2008). This report shows that epidemics of AlmWB may occur also on peach and nectarine under field conditions, and strongly suggests the presence of an efficient vector

    The Potential of Visible and Far-Red to Near-Infrared Light in Glaucoma Neuroprotection

    Get PDF
    Alternative treatment strategies are necessary to reduce the severity of glaucoma, a group of eye conditions that progressively damage the optic nerve and impair vision. The aim of this review is to gain insight into potentially exploitable molecular mechanisms to slow down the death of retinal ganglion cells (RGCs), a fundamental element in the pathophysiology of all forms of glaucoma, and to stimulate adult optic nerve repair. For this purpose, we focus our analysis on both visible and far-red to near-infrared light photobiomodulation (PBM) as phototherapeutic agents, which were recently proposed in RGCs, and on the nerve lamina region neural progenitor cell (ONLR-NPC) niche. Both are suggested as potential strategies in glaucoma neuroprotection. We discuss the impact of beneficial molecular effects of PBM on both mitochondrial derangement and the alteration of ion fluxes that are considered important causes of RGC damage, as well as on the stimulation of progenitor cells. We suggest these are the most promising approaches to prevent excessive neuronal cell loss. We describe the experimental evidence supporting the validity of PBM therapy which, despite being a safe, non-invasive, inexpensive, and easy to administer procedure, has not yet been fully explored in the clinical practice of glaucoma treatment

    Population structure of the registered Indubrasil cattle in Brazil

    Get PDF
    The aim of this study was to describe the population structure of the registered Indubrasil cattle in Brazil. Descriptive statistics of the distribution of the number of progeny, the generation interval, F-statistics, effective number of founders, ancestors, reminiscent genomes and effective population size were estimated using pedigree records from animals registered between 1938-1998. In the last period studied (1994-1998) 3.673 animals, 1.753 males and 1.920 females belonging to 84 breeders were registered. The generations intervals calculated in each of the four periods 1979-1983, 1984-1988, 1989-1993 and 1994-1998 were, respectively, 7,27; 7,57; 7,83 and 7,45 yr. The effective size of the population, founders, ancestors and reminiscent genomes in each of these periods were respectively: 63, 40, 35 e 42; 458, 417, 278 e 181; 349, 284, 176 e 107; 240, 189, 114 e 65

    Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei

    Full text link

    Deposition of tin oxide, iridium and iridium oxide films by metal-organic chemical vapor deposition for electrochemical wastewater treatment

    Get PDF
    In this research, the specific electrodes were prepared by metal-organic chemical vapor deposition (MOCVD) in a hot-wall CVD reactor with the presence of O2 under reduced pressure. The Ir protective layer was deposited by using (Methylcyclopentadienyl) (1,5-cyclooctadiene) iridium (I), (MeCp)Ir(COD), as precursor. Tetraethyltin (TET) was used as precursor for the deposition of SnO2 active layer. The optimum condition for Ir film deposition was at 300 °C, 125 of O2/(MeCp)Ir(COD) molar ratio and 12 Torr of total pressure. While that of SnO2 active layer was at 380 °C, 1200 of O2/TET molar ratio and 15 Torr of total pressure. The prepared SnO2/Ir/Ti electrodes were tested for anodic oxidation of organic pollutant in a simple three-electrode electrochemical reactor using oxalic acid as model solution. The electrochemical experiments indicate that more than 80% of organic pollutant was removed after 2.1 Ah/L of charge has been applied. The kinetic investigation gives a two-step process for organic pollutant degradation, the kinetic was zero-order and first-order with respect to TOC of model solution for high and low TOC concentrations, respectively
    corecore