143 research outputs found
5-HT4 Receptors Are Not Involved in the Effects of Fluoxetine in the Corticosterone Model of Depression
Clinical and preclinical studies report the implication of 5-hydroxytryptamine 4 receptors (5-HT4Rs) in depression and anxiety. Here, we tested whether the absence of 5-HT4Rs influences the response to the antidepressant fluoxetine in mice subjected to chronic corticosterone administration, an animal model of depression and anxiety. Therefore, the effects of chronic administration of fluoxetine in corticosterone-treated wild-type (WT) and 5-HT4R knockout (KO) mice were evaluated in the open-field and novelty suppressed feeding tests. As 5-HT1A receptor (5-HT1AR) and brain-derived neurotrophic factor (BDNF) are critically involved in depression and anxiety, we further evaluated 5-HT1A receptor functionality by [35S]GTP?S autoradiography and BDNF mRNA expression by in situ hybridization techniques. We found that 5-HT4R KO and WT mice displayed anxiety- and depressive-like behavior following chronic administration of corticosterone, as evidenced in the open-field and novelty suppressed feeding tests. In the open-field, a decreased central activity was observed in na??ve and corticosterone-treated mice of both genotypes following chronic fluoxetine administration. In the novelty suppressed feeding test, a predictive paradigm of antidepressant activity, chronic treatment with fluoxetine reverted the latency to eat in both genotypes. The antidepressant also potentiated the corticosterone-induced desensitization of the 5-HT1AR in the dorsal raphe nucleus. Further, chronic fluoxetine increased BDNF mRNA expression in the dentate gyrus of the hippocampus in corticosterone-treated mice of both genotypes. Therefore, our findings indicate that the behavioral effects of fluoxetine in the corticosterone model of depression and anxiety appear not to be dependent on 5-HT4Rs.ACKNOWLEDGMENTS: This research was supported by Ministerio de Economía y Competitividad (SAF2011-25020 and SAF2015-67457-R), Ministerio de Ciencia, Innovación y Universidades (RTI2018-097534-B-I00), and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)
A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors
There is accumulating evidence that membrane-bound receptors interact with many intracellular proteins. Multiprotein complexes associated with ionotropic receptors have been extensively characterized, but the identification of proteins interacting with G protein-coupled receptors (GPCRs) has so far only been achieved in a piecemeal fashion, focusing on one or two protein species. We describe a method based on peptide affinity chromatography, two-dimensional electrophoresis, mass spectrometry and immunoblotting to identify the components of multiprotein complexes interacting directly or indirectly with intracellular domains of GPCRs or, more generally, any other membrane-bound receptor. Using this global approach, we have characterized multiprotein complexes that bind to the carboxy-terminal tail of the 5-hydroxytryptamine type 2C receptor and are important for its subcellular localization in CNS cells (Bécamel et al., EMBO J., 21(10): 2332, 2002)
5-Hydroxytryptamine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
oai:ojs.pkp.sfu.ca:article/31555-HT receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-HT receptors [194] and subsequently revised [176]) are, with the exception of the ionotropic 5-HT3 class, GPCRs where the endogenous agonist is 5-hydroxytryptamine. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology [40, 482]. Most 5-HT receptors (except 5-ht1e and 5-ht5b) play specific roles mediating functional responses in different tissues (reviewed by [463, 382])
5-Hydroxytryptamine receptors in GtoPdb v.2023.1
5-HT receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-HT receptors [198] and subsequently revised [180]) are, with the exception of the ionotropic 5-HT3 class, GPCRs where the endogenous agonist is 5-hydroxytryptamine. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology [40, 491]. Most 5-HT receptors (except 5-ht1e and 5-ht5b) play specific roles mediating functional responses in different tissues (reviewed by [471, 387])
Engineering GPCR signaling pathways with RASSLs
We are creating families of designer G-protein-coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the three major GPCR signaling pathways (Gs, Gi, Gq). These new advances are reviewed here to help facilitate the use of these powerful and diverse tools
Modifying Ligand-Induced and Constitutive Signaling of the Human 5-HT4 Receptor
G protein–coupled receptors (GPCRs) signal through a limited number of G-protein pathways and play crucial roles in many biological processes. Studies of their in vivo functions have been hampered by the molecular and functional diversity of GPCRs and the paucity of ligands with specific signaling effects. To better compare the effects of activating different G-protein signaling pathways through ligand-induced or constitutive signaling, we developed a new series of RASSLs (receptors activated solely by synthetic ligands) that activate different G-protein signaling pathways. These RASSLs are based on the human 5-HT4b receptor, a GPCR with high constitutive Gs signaling and strong ligand-induced G-protein activation of the Gs and Gs/q pathways. The first receptor in this series, 5-HT4-D100A or Rs1 (RASSL serotonin 1), is not activated by its endogenous agonist, serotonin, but is selectively activated by the small synthetic molecules GR113808, GR125487, and RO110-0235. All agonists potently induced Gs signaling, but only a few (e.g., zacopride) also induced signaling via the Gq pathway. Zacopride-induced Gq signaling was enhanced by replacing the C-terminus of Rs1 with the C-terminus of the human 5-HT2C receptor. Additional point mutations (D66A and D66N) blocked constitutive Gs signaling and lowered ligand-induced Gq signaling. Replacing the third intracellular loop of Rs1 with that of human 5-HT1A conferred ligand-mediated Gi signaling. This Gi-coupled RASSL, Rs1.3, exhibited no measurable signaling to the Gs or Gq pathway. These findings show that the signaling repertoire of Rs1 can be expanded and controlled by receptor engineering and drug selection
Lesion study of the distribution of serotonin 5-HT4 receptors in rat basal ganglia and hippocampus.
International audienceThe regional distribution of 5-hydroxytryptamine (5-HT4) receptors labelled with [3H]GR113808 was examined in rat basal ganglia and hippocampus after specific lesions. Lesion of serotonin neurons induced by injections of 5,7-dihydroxytryptamine into the dorsal and medial raphe nuclei resulted in increased 5-HT4 receptor binding in most regions examined, compared with controls. More precisely, there was a 78% increase in the rostral but no change in the caudal part of caudate-putamen, and 83% and 54% increases in the shell and core of the nucleus accumbens respectively. In the substantia nigra, the increase in 5-HT4 binding was larger (72%) than that in the globus pallidus (32%). In the hippocampus, 63%, 30% and 28% increases were measured in CA2, CA1 and CA3 respectively. Following lesion of dopamine neurons by intranigral injection of 6-hydroxydopamine, increased 5-HT4 receptor binding was observed in the caudal (59%), but not the rostral part of caudate-putamen, as well as in the globus pallidus (93%). Since no decreases in 5-HT4 receptor density were detected after the dopamine lesion, it was concluded that these receptors are not expressed in dopamine neurons. Kainic acid lesions of the caudate-putamen were associated with dramatic local decreases in 5-HT4 receptor binding on the injected side (-89%), which suggested that striatal neurons express 5-HT4 receptors. Corresponding decreases of 72 and 20% in receptor density were detected in globus pallidus and substantia nigra, consistent with a presumed localization of 5-HT4 receptors on striatal GABA neurons projecting to these regions. In the substantia nigra, the decrease in [3H]GR113808 binding was localized to the pars lateralis, indicating that striatal neurons belonging to the cortico-striato-nigro-tectal pathway, and containing GABA and dynorphin, express 5-HT4 receptors
- …