502 research outputs found

    Effect of bonding of a CO molecule on the conductance of atomic metal wires

    Get PDF
    We have measured the effect of bonding of a CO molecule on the conductance of Au, Cu, Pt, and Ni atomic contacts at 4.2 K. When CO gas is admitted to the metal nano contacts, a conductance feature appears in the conductance histogram near 0.5 of the quantum unit of conductance, for all metals. For Au, the intensity of this fractional conductance feature can be tuned with the bias voltage, and it disappears at high bias voltage (above ∌\sim 200 mV). The bonding of CO to Au appears to be weakest, and associated with monotomic Au wire formation.Comment: 6 figure

    Vibrationally Induced Two-Level Systems in Single-Molecule Junctions

    Get PDF
    Single-molecule junctions are found to show anomalous spikes in dI/dV spectra. The position in energy of the spikes are related to local vibration mode energies. A model of vibrationally induced two-level systems reproduces the data very well. This mechanism is expected to be quite general for single-molecule junctions. It acts as an intrinsic amplification mechanism for local vibration mode features and may be exploited as a new spectroscopic tool.Comment: 4 pages, 4 figure

    Compressive, tensile and thermal properties of epoxy grouts subjected to underwater conditioning at elevated temperature

    Get PDF
    Oil and gas pipes are susceptible to failure initiated by corrosion due to their operating pressure under adverse atmospheric conditions. Repairs, comprising a composite shell assembled around the pipe with a small gap, which is then infilled with grout, are considered a suitable option for corroded pipelines. This paper presents the investigation on the mechanical (compression, tension) properties and glass transition temperatures of two infill grouts, after 1000 hour of hot/wet conditioning. An extended investigation on the moisture absorption behaviour was also carried out, revealing the highest absorption to be about 6% after 2520 hours of immersion. The glass transition temperatures of the grouts are reduced by approximately 20ÂșC. The results suggest that the grouts underwent significant reduction of strength and stiffness due to hot/wet conditioning when tested at an elevated temperature, compared to room temperature. This reduced strength and stiffness is the result of the grouts being tested in close proximity to their glass transition temperatures

    Stretching dependence of the vibration modes of a single-molecule Pt-H2-Pt bridge

    Get PDF
    A conducting bridge of a single hydrogen molecule between Pt electrodes is formed in a break junction experiment. It has a conductance near the quantum unit, G_0 = 2e^2/h, carried by a single channel. Using point contact spectroscopy three vibration modes are observed and their variation upon stretching and isotope substitution is obtained. The interpretation of the experiment in terms of a Pt-H_2-Pt bridge is verified by Density Functional Theory calculations for the stability, vibrational modes, and conductance of the structure.Comment: 5 pages, 4 figure

    Numerical simulation of “sand-like” polymer flow during rotational moulding using smoothed particle hydrodynamics method

    Full text link
    Rotational moulding is a versatile polymer shaping process used to create enclosed parts from powdered precursors using heat and multi-axis rotation. Controlling the heating process and mould motion is critical to producing high-quality parts, and failures due to incorrect mould coverage or variable wall thickness are common. To date, limited simulation tools exist to predict the motion of the powder within the mould, and operators rely on unreliable prior experience to avoid defects. This paper presents an SPH simulation framework to predict particle flow patterns and powder contact time within a rotating mould. The powder-to-wall contact time was derived from the transient rigid body force (RBF) of different sensors on the mould. The method was compared with the results of DEM simulation and validated by the particle flow pattern of two experimental results. Results showed that the SPH method was capable of simulating particle flow macroscopic properties. The great computing efficiency of SPH compared to DEM simulation was also demonstrated

    Detection of SARS-CoV-2 RNA in the Danube river in Serbia associated with the discharge of untreated wastewaters

    Get PDF
    In Serbia less than 13 % of collected municipal wastewaters is being treated before their release in the environment. This includes all municipal wastewater discharges from Belgrade (capital city of Serbia; population 1,700,000). Previous research has identified the impacts of raw wastewater discharges from Belgrade on the Danube River, and this study investigated if such discharges also provided a pathway for SARS-CoV-2 RNA material. Samples were collected during the most critical circumstances that occurred so far within the COVID-19 pandemics in Serbia. Grab and composite samples were collected in December 2020, during the peak of the third wave (in terms of reported cases) at the site which receives the wastewater loads in Belgrade. Grab samples collected upstream and downstream of Belgrade were also analyzed. RNA was quantified using RT-qPCR with primer sets targeting nucleocapsid (N1 and N2) and envelope (E) protein genes. SARS-CoV-2 RNA (5.97×103 to 1.32×104 copies/L) was detected only in samples collected at the site strongly impacted by the wastewaters where all three applied primer sets gave positive signals. Determined concentrations correspond to those reported in wastewater influents sampled at treatment plants in other countries indicating an epidemiological indicator function of used approach for rivers with high pollution loads in countries with poor wastewater treatment

    Inpatient versus outpatient intravenous diuresis for the acute exacerbation of chronic heart failure

    Get PDF
    BACKGROUND: We established an IV outpatient diuresis (IVOiD) clinic and conducted a quality improvement project to evaluate safety, effectiveness and costs associated with outpatient versus inpatient diuresis for patients presenting with acute decompensated heart failure (ADHF) to the emergency department (ED). METHODS: Patients who were clinically diagnosed with ADHF in the ED, but did not have high-risk features, were either diuresed in the hospital or in the outpatient IVOiD clinic. The dose of IV diuretic was based on their home maintenance diuretic dose. The outcomes measured were the effects of diuresis (urine output, weight, hemodynamic and laboratory abnormalities), 30-90 day readmissions, 30-90 day death and costs. RESULTS: In total, 36 patients (22 inpatients and 14 outpatients) were studied. There were no significant differences in the baseline demographics between groups. The average inpatient stay was six days and the average IVOiD clinic days were 1.2. There was no significant difference in diuresis per day of treatment (1159 vs. 944 ml, p = 0.46). There was no significant difference in adverse outcomes, 30-90 day readmissions or 30-90 day deaths. There was a significantly lower cost in the IVOiD group compared to the inpatient group (839.4vs.839.4 vs. 9895.7, p=\u3c0.001). CONCLUSIONS: Outpatient IVOiD clinic diuresis may be a viable alternative to accepted clinical practice of inpatient diuresis for ADHF. Further studies are needed to validate this in a larger cohort and in different sites

    Core competencies for pain management: results of an interprofessional consensus summit.

    Get PDF
    ObjectiveThe objective of this project was to develop core competencies in pain assessment and management for prelicensure health professional education. Such core pain competencies common to all prelicensure health professionals have not been previously reported.MethodsAn interprofessional executive committee led a consensus-building process to develop the core competencies. An in-depth literature review was conducted followed by engagement of an interprofessional Competency Advisory Committee to critique competencies through an iterative process. A 2-day summit was held so that consensus could be reached.ResultsThe consensus-derived competencies were categorized within four domains: multidimensional nature of pain, pain assessment and measurement, management of pain, and context of pain management. These domains address the fundamental concepts and complexity of pain; how pain is observed and assessed; collaborative approaches to treatment options; and application of competencies across the life span in the context of various settings, populations, and care team models. A set of values and guiding principles are embedded within each domain.ConclusionsThese competencies can serve as a foundation for developing, defining, and revising curricula and as a resource for the creation of learning activities across health professions designed to advance care that effectively responds to pain

    Conservation laws for invariant functionals containing compositions

    Full text link
    The study of problems of the calculus of variations with compositions is a quite recent subject with origin in dynamical systems governed by chaotic maps. Available results are reduced to a generalized Euler-Lagrange equation that contains a new term involving inverse images of the minimizing trajectories. In this work we prove a generalization of the necessary optimality condition of DuBois-Reymond for variational problems with compositions. With the help of the new obtained condition, a Noether-type theorem is proved. An application of our main result is given to a problem appearing in the chaotic setting when one consider maps that are ergodic.Comment: Accepted for an oral presentation at the 7th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2007), to be held in Pretoria, South Africa, 22-24 August, 200

    Shot noise suppression at room temperature in atomic-scale Au junctions

    Full text link
    Shot noise encodes additional information not directly inferable from simple electronic transport measurements. Previous measurements in atomic-scale metal junctions at cryogenic temperatures have shown suppression of the shot noise at particular conductance values. This suppression demonstrates that transport in these structures proceeds via discrete quantum channels. Using a high frequency technique, we simultaneously acquire noise data and conductance histograms in Au junctions at room temperature and ambient conditions. We observe noise suppression at up to three conductance quanta, with possible indications of current-induced local heating and 1/f1/f noise in the contact region at high biases. These measurements demonstrate the quantum character of transport at room temperature at the atomic scale. This technique provides an additional tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures
    • 

    corecore