37 research outputs found

    Soil stabilisation for DNA metabarcoding of plants and fungi. Implications for sampling at remote locations or via third-parties

    Get PDF
    Storage of soil samples prior to metagenomic analysis presents a problem. If field sites are remote or if samples are collected by third parties, transport to analytical laboratories may take several days or even weeks. The bulk of such samples and requirement for later homogenisation precludes the convenient use of a stabilisation buffer, so samples are usually cooled or frozen during transit. There has been limited testing of the most appropriate storage methods for later study of soil organisms by eDNA approaches. Here we tested a range of storage methods on two contrasting soils, comparing these methods to the control of freezing at -80 Ā°C, followed by freeze-drying. To our knowledge, this is the first study to examine the effect of storage conditions on eukaryote DNA in soil, including both viable organisms (fungi) and DNA contained within dying/dead tissues (plants). For fungi, the best storage regimes (closest to the control) were storage at 4 Ā°C (for up to 14 d) or active air-drying at room temperature. The worst treatments involved initial freezing, followed by thawing which led to significant later spoilage. The key spoilage organisms were identified as Metarhizium carneum and Mortierella spp., with a general increase in saprotrophic fungi and reduced abundances of mycorrhizal/biotrophic fungi. Plant data showed a similar pattern, but with greater variability in community structure, especially in the freeze-thaw treatments, probably due to stochastic variation in substrates for fungal decomposition, algal proliferation and some seed germination. In the absence of freeze drying facilities, samples should be shipped refrigerated, but not frozen if there is any risk of thawing

    Deep seam and minesoil carbon sequestration potential of the South Wales Coalfield, UK

    Get PDF
    Combustion of coal for energy generation has been a significant contributor to increased concentrations of atmospheric carbon dioxide. It is of interest to evaluate the potential of former coalfields for mitigating these increases by carbon sequestration and to compare different options to achieving this end. Here, carbon sequestration in residual coal seams and through reclamation of spoil tips is compared, and their carbon dioxide storage potential in the South Wales Coalfield estimated. Coal seam sequestration estimates come from an established methodology and consider the total unmined coal resource below 500 m deep with potential for carbon sequestration. The most likely effective deep seam storage capacity is 104.9 Mt carbon dioxide, taking account of reservoir conditions and engineering factors. Whilst many spoil tips in South Wales have been reclaimed, the focus has not been on carbon sequestration potential. Estimates of minesoil restoration sequestration capacity were based on a survey of restored minesoil and vegetation carbon stocks, mainly on sites 20ā€“30 years after restoration; data from this survey were then extrapolated to the coalfield as a whole. Minesoil storage is estimated at 1.5 or 2.5 Mt (+2.2 Mt in tree biomass) carbon dioxide based on average grassland or woodland measurements, respectively; modelled data predicted equilibrium values of 2.9 and 2.6 Mt carbon dioxide respectively in grassland or woodland minesoils. If all sites achieved close to the maximum capacity in their land use class, minesoil storage capacity would increase to 2.1 or 3.9 Mt carbon dioxide, respectively. Combining the best woodland minesoil and standing biomass values, sequestration capacity increases to 7.2 Mt carbon dioxide. The wider social, economic, environmental and regulatory constraints to achieving this sequestration for each approach are discussed. Coal seam sequestration has a much higher capacity but sequestration in mine sites is less costly and has fewer regulatory constraints. Findings indicate a significant combined potential for carbon sequestration in the South Wales Coalfield and highlight challenges in achieving this potential. On a global scale, ex-coalfield sequestration could contribute to broader efforts to mitigate emissions

    Vegetation and edaphic factors influence rapid establishment of distinct fungal communities on former coal-spoil sites

    Get PDF
    We investigated re-establishment of fungal communities on eight former colliery sites in South Wales following revegetation 22ā€“27ā€Æy earlier. Regraded bare coal-spoil was seeded to sheep-grazed grasslands, with saplings planted into coal-spoil for woodlands. Metabarcoding (28S rRNA, D1 region) of soil fungal populations showed that woodland and grassland habitats were clearly divergent but edaphic variables only weakly affected fungal community structure. Root-associated basidiomycetes dominated all habitats, with ectomycorrhizal fungi more abundant in woodlands and Clavariaceae/Hygrophoraceae (ā€˜CHEGā€™ fungi) in grasslands. The composition of coal-spoil grassland communities resembled that of a typical upland grassland site, suggesting that propagule immigration was not a limiting factor. However, fungal biomass (ergosterol) was 3-fold lower, reflecting high bulk density and poor structure. Re-establishment of fungal communities in coal-spoil soils represents an important barometer of restoration success. From a fungal conservation perspective, such sites represent important refugia for waxcap fungi subject to habitat loss from agricultural intensificatio

    Teaching word recognition to children with severe learning difficulties: an exploratory comparison of teaching methods

    Get PDF
    Background: Some children with severe learning difficulties fail to begin word recognition. For these children there is a need for an effective and appropriate pedagogy. However, conflicting advice can be found regarding this derived from teaching approaches that are not based on a shared understanding of how reading develops or the skills that the non-reader needs to master. Purpose: In this research, three techniques for teaching word recognition in this context are described and compared: (1) the handle technique, (2) morphing method and (3) word alone. It also discusses whether it is appropriate for such small-scale research to influence pedagogy. Programme description: The handle technique uses an abstract mnemonic cue used to teach word recognition, and previous research indicates it is more successful than the presentation of words alone. The morphing method transforms a word into a photographic picture and a previous study suggested that it might also be more effective that presenting words alone. Sample: Six children between 11 and 13 years of age were selected. The criterion for selection was being unable to recognise any words from the British Ability Scales Reading Test. All the children attended a school for children with severe learning difficulties. Design and methods: A three-condition related design was used. The order in which the conditions were presented was counterbalanced and each child was taught 12 words, four words in each experimental condition. The children encountered each of the three methods and overall each word was taught via each method. Within conditions (teaching methods), the presentation of words was randomised. The number of words that the children could read (without cues) before each session was recorded, following the presentation of the uncued words in a random order. The difference in the number of words recognised between the three conditions was considered using a non-parametric statistical analysis. Results: The results suggest that the handle approach might be a more effective method of teaching word recognition. Conclusion: Research in this area is necessarily small in scale. However, it is ongoing and cumulative, and can give insights into potentially beneficial changes in classroom practice

    The Wrong Kind of Noise: Understanding and Valuing the Communication of Autistic Children in Schools

    Get PDF
    As a result of the association of autism with speech and language difficulties, autistic school children can be subject to interventions ostensibly intended to remedy these problems. However, my study, based in five mainstream primary schools in England, which incorporated the views and experiences of school staff (n = 36), autistic children (n = 10), their parents (n = 10) and a sample of autistic adults (n = 10), suggests that these inputs do not always provide the children with the help they require. Indeed, notwithstanding some examples of effective assistance, the more evident communication of the autistic children, in its various manifestations, might be ignored and their wishes denied, if deemed not to correspond with the expectations or intentions of the supporting adult. Furthermore, their communication was also found to intersect with the issue of noise in schools, a complex phenomenon which can be an exclusionary factor for autistic children. Indeed, if some forms of noise were tolerated in school, the sounds emanating from autistic children might be disdained, while the communicative value of their silence was not evidently recognised either. Therefore, whether speaking, making noises or remaining silent, autistic children can be deemed to be making the wrong kind of noise. Elucidated via empirical examples from my study, the implications for research and practice are discussed, providing alternative perspectives on how to support the communication of autistic children, leading to greater agency, well-being and educational inclusion on their part

    ISPEEK at Home

    No full text
    corecore