598 research outputs found

    An improved synthesis, crystal structures, and metallochromism of salts of [Ru(tolyl-terpy)(CN)(3)](-)

    No full text
    The previously reported complex [Ru(ttpy)(CN)(3)] [ttpy = 4'(p-tolyl)-2,2':6',2"-terpyridine] is conveniently synthesised by reaction of ttpy with Ru(dmso)(4)Cl-2 to give [Ru(ttpy)(dmso)Cl-2], which reacts in turn with KCN in aqueous ethanol to afford [Ru(ttpy)(CN)(3)] which was isolated and crystallographically characterised as both its (PPN)(+) and K+ salts. The K+ salt contains clusters containing three complex anions and three K+ cations connected by end-on and side-on cyanide ligation to the K+ ions. The solution speciation behaviour of [Ru(ttpy)(CN)(3)] was investigated with both Zn2+ and K+ salts in MeCN, a solvent sufficiently non-competitive to allow the added metal cations to associate with the complex anion via the externally-directed cyanide lone pairs. UV-Vis spectroscopic titration of (PPN)[Ru(ttpy)(CN)(3)] with Zn(ClO4)(2) showed a blue shift of 2900 cm (1) in the (MLCT)-M-1 absorption manifold due to the ` metallochromism' effect; a series of distinct binding events could be discerned corresponding to formation of 4:1, 1:1 and then 1:3 anion: cation adducts, all with high formation constants, as the titration proceeded. In contrast titration of (PPN)[Ru(ttpy)(CN)(3)] with the more weakly Lewis-acidic KPF6 resulted in a much smaller blue-shift of the 1MLCT absorptions, and the titration data corresponded to formation of 1:1 and then 2: 1 cation: anion adducts with weaker stepwise association constants of the order of 10(4) and then 10(3) M (1). Although association of [Ru(ttpy)(CN)(3)] resulted in a blue-shift of the (MLCT)-M-1 absorptions, the luminescence was steadily quenched, as raising the (MLCT)-M-3 level makes radiationless decay via a lowlying (MC)-M-3 state possible. (C) 2010 Elsevier B. V. All rights reserved

    Formation and structural chemistry of the unusual cyanide-bridged dinuclear species [Ru-2(NN)(2)(CN)(7)](3-)(NN=2,2 '-bipyridine or 1,10-phenanthroline)

    Get PDF
    Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)(4)](2) (NN = 2,2'-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)(4)](2) salts, in the formation of small amounts of salts of the dinuclear species [Ru-2(NN)(2)(CN)(7)](3). These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)(4)](2) following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)(5.5)][Ru-2(bipy)(2)(CN)(7)] center dot 11H(2)O and [Pr(H2O)(6)][Ru-2(phen)(2)(CN)(7)] center dot 9H(2)O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru(2)Ln(2)(mu-CN)(4) squares and Ru(4)Ln(2)(mu-CN)(6) hexagons, which alternate to form a one-dimensional chain. In [CH6N3](3)[Ru-2(bipy)(2)(CN)(7)] center dot 2H(2)O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru-2(NN)(2)(CN)(7)](3) anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4'-Bu-t(2)-2,2'-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3](2)[Ru((t)Bu(2)bipy)(CN)(4)] center dot 2H(2)O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru-2(phen)(2)(CN)(7)](3) could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)(4)](2) if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru-2(bipy)(2)(CN)(7)](3) (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)(4)](2), with a (MLCT)-M-3 emission at 581 nm

    Hospital Discharge: Results From an Italian Multicenter Prospective Study Using Blaylock Risk Assessment Screening Score

    Get PDF
    PURPOSE:To analyze the predictive validity and reliability of the Blaylock Risk Assessment Screening Score (BRASS) Index in a large group of patients. METHODS: Prospective multicenter observational study was conducted in six Italian hospitals. Data were collected in three phases. FINDINGS: Seven hundred eleven patients were recruited. The mean length of hospitalization for low-risk patients was significantly shorter than those in the medium and high-risk groups. Patients with a BRASS Index lower than 10, unlike those with a higher BRASS Index, were mainly discharged home. CONCLUSIONS: Our results indicate that the BRASS Index is useful to identify patients at risk for prolonged hospitalization. CLINICAL RELEVANCE: The use of a validated BRASS instrument can be useful to screen the patients, improving individual discharge planning

    Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells

    Get PDF
    Phage display screening allows the study of functional protein–protein interactions at the cell surface, but investigating intracellular organelles remains a challenge. Here we introduce internalizing-phage libraries to identify clones that enter mammalian cells through a receptor-independent mechanism and target-specific organelles as a tool to select ligand peptides and identify their intracellular receptors. We demonstrate that penetratin, an antennapedia-derived peptide, can be displayed on the phage envelope and mediate receptor-independent uptake of internalizing phage into cells. We also show that an internalizing-phage construct displaying an established mitochondria-specific localization signal targets mitochondria, and that an internalizing-phage random peptide library selects for peptide motifs that localize to different intracellular compartments. As a proof-of-concept, we demonstrate that one such peptide, if chemically fused to penetratin, is internalized receptor-independently, localizes to mitochondria, and promotes cell death. This combinatorial platform technology has potential applications in cell biology and drug development

    Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1

    Get PDF
    Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ≤ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases

    Report of the 12th Liaison Meeting

    Get PDF
    The 12th Liaison meeting was held in Brussels on 8th and 9th October 2015 to address the following Terms of Reference: TOR 1. Discussion on possible follow-­‐‑up to the main outputs/recommendations of: • The 2015 RCMs -­‐‑ specific recommendations addressed to the Liaison Meeting • PGECON, PGDATA, PGMed – outcomes and recommendations from their 2015 meeting • STECF EWG and STECF Plenary -­‐‑ outcomes and recommendations from their 2015 meetings • Data end users (ICES, STECF, RFMOs – GFCM, IATTC, ICCAT, IOTC, WCPFC, NAFO, SPRFMO, CECAF, WECAFC) TOR2. End user feedback on data transmission and related issues • Discuss feedback received from data end-­‐‑users on data transmission: main issues and possible harmonization of end user feedback to the Commission • JRC data transmission IT platform: experience gained and future steps • Discuss best practices on automatization of data upload by MS: data validation tools used by end users • Discussion on new set-­‐‑up for STECF evaluation of AR2014 & data transmission 2014 used in 2015 – continue like this next year? • Harmonisation and dissemination of DCF metadata: codelists, metiers, nomenclatures, best practices, standards • RCM data calls – overview of how MS responded TOR 3. Regional cooperation • Call for proposals MARE/2014/19 'ʹStrengthening Regional Cooperation in the area of fisheries data collection– state of play'ʹ. Presentation by a representative of the two RCG grants and discussions by LM thereafter. What should be the way forward? • Regional databases • Overview of use of the Regional Databases for RCMs in 2015 and problems identified • Other developments (RDB trainings in 2015, RDB Med&BS development) • Changes for the future – any recommendations from the LM? • Future role of RCMs and DCF-­‐‑related meetings: best practices, coordination, cohesion and common structure in line with emerging needs of DCF TOR 4. EU MAP • Discuss recommendations/ output of RCMs: List of proposed stocks, landing obligation, metiers • Discuss design-­‐‑based sampling in relation to DCF: does it fulfil DCF requirements? TOR 5. Availability of data • Overview of latest developments (DCF Database Feasibility Study and plans for a follow-­‐‑up study to this) TOR 6. AOB • Agree on a list of recommendations relating to DCF (that MS will need to report on in their AR2015) – COM will provide a compilation of proposed recommendations from LM & STECF Plenaries in 2014 as input • Prepare a list of recommended meetings for 2016 as guidance for MS • Review and prioritize DCF-­‐‑related study proposals from RCMs, PGECON, EGs etc • ICES update on workshop on concurrent sampling and plans to re-­‐‑evaluate survey

    Non-Metabolic Membrane Tubulation and Permeability Induced by Bioactive Peptides

    Get PDF
    BACKGROUND: Basic cell-penetrating peptides are potential vectors for therapeutic molecules and display antimicrobial activity. The peptide-membrane contact is the first step of the sequential processes leading to peptide internalization and cell activity. However, the molecular mechanisms involved in peptide-membrane interaction are not well understood and are frequently controversial. Herein, we compared the membrane activities of six basic peptides with different size, charge density and amphipaticity: Two cell-penetrating peptides (penetratin and R9), three amphipathic peptides and the neuromodulator substance P. METHODOLOGY/PRINCIPAL FINDINGS: Experiments of X ray diffraction, video-microscopy of giant vesicles, fluorescence spectroscopy, turbidimetry and calcein leakage from large vesicles are reported. Permeability and toxicity experiments were performed on cultured cells. The peptides showed differences in bilayer thickness perturbations, vesicles aggregation and local bending properties which form lipidic tubular structures. These structures invade the vesicle lumen in the absence of exogenous energy. CONCLUSIONS/SIGNIFICANCE: We showed that the degree of membrane permeabilization with amphipathic peptides is dependent on both peptide size and hydrophobic nature of the residues. We propose a model for peptide-induced membrane perturbations that explains the differences in peptide membrane activities and suggests the existence of a facilitated “physical endocytosis,” which represents a new pathway for peptide cellular internalization

    Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids

    Get PDF
    Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial agent. The mechanisms involved in all these processes are quite controversial.In this article, we report spectroscopic, calorimetric and biochemical data on the penetratin interaction with three different phospholipids: phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to mimic respectively the outer and the inner leaflets of the eukaryotic plasma membrane and phosphatidylglycerol (PG) to mimic the bacterial membrane. We demonstrate that with PC, penetratin is able to form vesicle aggregates with no major change in membrane fluidity and presents no well defined secondary structure organization. With PE, penetratin aggregates vesicles, increases membrane rigidity and acquires an α-helical structure. With PG membranes, penetratin does not aggregate vesicles but decreases membrane fluidity and acquires a structure with both α-helical and β–sheet contributions.These data from membrane models suggest that the different penetratin actions in eukaryotic cells (membrane translocation during export and import) and on prokaryotes may result from different peptide and lipid structural arrangements. The data suggest that, for eukaryotic cell penetration, penetratin does not acquire classical secondary structure but requires a different conformation compared to that in solution
    corecore