225 research outputs found

    Targeted Next Generation Sequencing for malaria research in Africa:Current status and outlook

    Get PDF
    Targeted Next Generation Sequencing (TNGS) is an efficient and economical Next Generation Sequencing (NGS) platform and the preferred choice when specific genomic regions are of interest. So far, only institutions located in middle and high-income countries have developed and implemented the technology, however, the efficiency and cost savings, as opposed to more traditional sequencing methodologies (e.g. Sanger sequencing) make the approach potentially well suited for resource-constrained regions as well. In April 2018, scientists from the Plasmodium Diversity Network Africa (PDNA) and collaborators met during the 7th Pan African Multilateral Initiative of Malaria (MIM) conference held in Dakar, Senegal to explore the feasibility of applying TNGS to genetic studies and malaria surveillance in Africa. The group of scientists reviewed the current experience with TNGS platforms in sub-Saharan Africa (SSA) and identified potential roles the technology might play to accelerate malaria research, scientific discoveries and improved public health in SSA. Research funding, infrastructure and human resources were highlighted as challenges that will have to be mitigated to enable African scientists to drive the implementation of TNGS in SSA. Current roles of important stakeholders and strategies to strengthen existing networks to effectively harness this powerful technology for malaria research of public health importance were discussed

    Reduced-bias estimator of the Conditional Tail Expectation of heavy-tailed distributions

    Get PDF
    International audienceSeveral risk measures have been proposed in the literature. In this paper, we focus on the estimation of the Conditional Tail Expectation (CTE). Its asymptotic normality has been first established in the literature under the classical assumption that the second moment of the loss variable is finite, this condition being very restrictive in practical applications. Such a result has been extended by Necir {\it et al.} (2010) in the case of infinite second moment. In this framework, we propose a reduced-bias estimator of the CTE. We illustrate the efficiency of our approach on a small simulation study and a real data analysis

    Low specificity of determine HIV1/2 RDT using whole blood in south west Tanzania

    Get PDF
    Objective: To evaluate the diagnostic performance of two rapid detection tests (RDTs) for HIV 1/2 in plasma and in whole blood samples. Methods: More than 15,000 study subjects above the age of two years participated in two rounds of a cohort study to determine the prevalence of HIV. HIV testing was performed using the Determine HIV 1/2 test (Abbott) in the first (2006/2007) and the HIV 1/2 STAT-PAK Dipstick Assay (Chembio) in the second round (2007/2008) of the survey. Positive results were classified into faint and strong bands depending on the visual appearance of the test strip and confirmed by ELISA and Western blot. Results: The sensitivity and specificity of the Determine RDT were 100% (95% confidence interval = 86.8 to 100%) and 96.8% (95.9 to 97.6%) in whole blood and 100% (99.7 to 100%) and 97.9% (97.6 to 98.1%) in plasma respectively. Specificity was highly dependent on the tested sample type: when using whole blood, 67.1% of positive results were false positive, as opposed to 17.4% in plasma. Test strips with only faint positive bands were more often false positive than strips showing strong bands and were more common in whole blood than in plasma. Evaluation of the STAT-PAK RDT in plasma during the second year resulted in a sensitivity of 99.7% (99.1 to 99.9%) and a specificity of 99.3% (99.1 to 99.4%) with 6.9% of the positive results being false. Conclusions: Our study shows that the Determine HIV 1/2 strip test with its high sensitivity is an excellent tool to screen for HIV infection, but that – at least in our setting – it can not be recommended as a confirmatory test in VCT campaigns where whole blood is used

    Neutrons describe ectoine effects on water H-bonding and hydration around a soluble protein and a cell membrane

    No full text
    Understanding adaptation to extreme environments remains a challenge of high biotechnological potential for fundamental molecular biology. The cytosol of many microorganisms, isolated from saline environments, reversibly accumulates molar concentrations of the osmolyte ectoine to counterbalance fluctuating external salt concentrations. Although they have been studied extensively by thermodynamic and spectroscopic methods, direct experimental structural data have, so far, been lacking on ectoine-water-protein interactions. In this paper, in vivo deuterium labeling, small angle neutron scattering, neutron membrane diffraction and inelastic scattering are combined with neutron liquids diffraction to characterize the extreme ectoine-containing solvent and its effects on purple membrane of H. salinarum and E. coli maltose binding protein. The data reveal that ectoine is excluded from the hydration layer at the membrane surface and does not affect membrane molecular dynamics, and prove a previous hypothesis that ectoine is excluded from a monolayer of dense hydration water around the soluble protein. Neutron liquids diffraction to atomic resolution shows how ectoine enhances the remarkable properties of H-bonds in water-properties that are essential for the proper organization, stabilization and dynamics of biological structures
    corecore