4 research outputs found

    Applying ACO To Large Scale TSP Instances

    Full text link
    Ant Colony Optimisation (ACO) is a well known metaheuristic that has proven successful at solving Travelling Salesman Problems (TSP). However, ACO suffers from two issues; the first is that the technique has significant memory requirements for storing pheromone levels on edges between cities and second, the iterative probabilistic nature of choosing which city to visit next at every step is computationally expensive. This restricts ACO from solving larger TSP instances. This paper will present a methodology for deploying ACO on larger TSP instances by removing the high memory requirements, exploiting parallel CPU hardware and introducing a significant efficiency saving measure. The approach results in greater accuracy and speed. This enables the proposed ACO approach to tackle TSP instances of up to 200K cities within reasonable timescales using a single CPU. Speedups of as much as 1200 fold are achieved by the technique

    Comparative evaluation of platforms for parallel Ant Colony Optimization

    Get PDF
    The rapidly growing field of nature-inspired computing concerns the development and application of algorithms and methods based on biological or physical principles. This approach is particularly compelling for practitioners in high-performance computing, as natural algorithms are often inherently parallel in nature (for example, they may be based on a “swarm”-like model that uses a population of agents to optimize a function). Coupled with rising interest in nature-based algorithms is the growth in heterogenous computing; systems that use more than one kind of processor. We are therefore interested in the performance characteristics of nature-inspired algorithms on a number of different platforms. To this end, we present a new OpenCL-based implementation of the Ant Colony Optimization algorithm, and use it as the basis of extensive experimental tests. We benchmark the algorithm against existing implementations, on a wide variety of hardware platforms, and offer extensive analysis. This work provides rigorous foundations for future investigations of Ant Colony Optimization on high-performance platforms

    Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization

    Get PDF
    © 2016 Springer Science+Business Media New York Ant colony optimisation (ACO) is a nature-inspired, population-based metaheuristic that has been used to solve a wide variety of computationally hard problems. In order to take full advantage of the inherently stochastic and distributed nature of the method, we describe a parallelization strategy that leverages these features on heterogeneous and large-scale, massively-parallel hardware systems. Our approach balances workload effectively, by dynamically assigning jobs to heterogeneous resources which then run ACO implementations using different search strategies. Our experimental results confirm that we can obtain significant improvements in terms of both solution quality and energy expenditure, thus opening up new possibilities for the development of metaheuristic-based solutions to “real world” problems on high-performance, energy-efficient contemporary heterogeneous computing platforms
    corecore