129 research outputs found
Hybrid compactifications and brane gravity in six dimensions
We consider a six-dimensional axisymmetric Einstein-Maxwell model of warped
braneworlds. The bulk is bounded by two branes, one of which is a conical
3-brane and the other is a 4-brane wrapped around the axis of symmetry. The
latter brane is assumed to be our universe. If the tension of the 3-brane is
fine-tuned, it folds the internal two-dimensional space in a narrow cone,
making sufficiently small the Kaluza-Klein circle of the 4-brane. An arbitrary
energy-momentum tensor can be accommodated on this ring-like 4-brane. We study
linear perturbations sourced by matter on the brane, and show that weak gravity
is apparently described by a four-dimensional scalar-tensor theory. The extra
scalar degree of freedom can be interpreted as the fluctuation of the internal
space volume (or that of the circumference of the ring), the effect of which
turns out to be suppressed at long distances. Consequently, four-dimensional
Einstein gravity is reproduced on the brane. We point out that as in the
Randall-Sundrum model, the brane bending mode is crucial for recovering the
four-dimensional tensor structure in this setup.Comment: 15 pages, 2 figures; v2: references added; v3: accepted for
publication in Class. Quant. Gra
Kicking the Rugby Ball: Perturbations of 6D Gauged Chiral Supergravity
We analyze the axially-symmetric scalar perturbations of 6D chiral gauged
supergravity compactified on the general warped geometries in the presence of
two source branes. We find all of the conical geometries are marginally stable
for normalizable perturbations (in disagreement with some recent calculations)
and the nonconical for regular perturbations, even though none of them are
supersymmetric (apart from the trivial Salam-Sezgin solution, for which there
are no source branes). The marginal direction is the one whose presence is
required by the classical scaling property of the field equations, and all
other modes have positive squared mass. In the special case of the conical
solutions, including (but not restricted to) the unwarped `rugby-ball'
solutions, we find closed-form expressions for the mode functions in terms of
Legendre and Hypergeometric functions. In so doing we show how to match the
asymptotic near-brane form for the solution to the physics of the source
branes, and thereby how to physically interpret perturbations which can be
singular at the brane positions.Comment: 21 pages + appendices, references adde
Antisperm Antibody Testing: A Comprehensive Review of Its Role in the Management of Immunological Male Infertility and Results of a Global Survey of Clinical Practices
Antisperm antibodies (ASA), as a cause of male infertility, have been detected in infertile males as early as 1954. Multiple causes of ASA production have been identified, and they are due to an abnormal exposure of mature germ cells to the immune system. ASA testing (with mixed anti-globulin reaction, and immunobead binding test) was described in the WHO manual 5th edition and is most recently listed among the extended semen tests in the WHO manual 6th edition. The relationship between ASA and infertility is somewhat complex. The presence of sperm agglutination, while insufficient to diagnose immunological infertility, may indicate the presence of ASA. However, ASA can also be present in the absence of any sperm agglutination. The andrological management of ASA depends on the etiology and individual practices of clinicians. In this article, we provide a comprehensive review of the causes of ASA production, its role in immunological male infertility, clinical indications of ASA testing, and the available therapeutic options. We also provide the details of laboratory procedures for assessment of ASA together with important measures for quality control. Additionally, laboratory and clinical scenarios are presented to guide the reader in the management of ASA and immunological male infertility. Furthermore, we report the results of a recent worldwide survey, conducted to gather information about clinical practices in the management of immunological male infertility
Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates
Terrestrial invertebrates are key components in ecosystems, with crucial roles in soil structure, functioning, and ecosystem services. The present chapter covers how terrestrial invertebrates are impacted by organic chemicals, focusing on up-to-date information regarding bioavailability, exposure routes and general concepts on bioaccumulation, toxicity, and existing models. Terrestrial invertebrates are exposed to organic chemicals through different routes, which are dependent on both the organismal traits and nature of exposure, including chemical properties and media characteristics. Bioaccumulation and toxicity data for several groups of organic chemicals are presented and discussed, attempting to cover plant protection products (herbicides, insecticides, fungicides, and molluscicides), veterinary and human pharmaceuticals, polycyclic aromatic compounds, polychlorinated biphenyls, flame retardants, and personal care products. Chemical mixtures are also discussed bearing in mind that chemicals appear simultaneously in the environment. The biomagnification of organic chemicals is considered in light of the consumption of terrestrial invertebrates as novel feed and food sources. This chapter highlights how science has contributed with data from the last 5Â years, providing evidence on bioavailability, bioaccumulation, and toxicity derived from exposure to organic chemicals, including insights into the main challenges and shortcomings to extrapolate results to real exposure scenarios
Technical aspects and clinical limitations of sperm DNA fragmentation testing in male infertility: a global survey, current guidelines, and expert recommendations.
PURPOSE: Sperm DNA fragmentation (SDF) is a functional sperm abnormality that can impact reproductive potential, for which four assays have been described in the recently published sixth edition of the WHO laboratory manual for the examination and processing of human semen. The purpose of this study was to examine the global practices related to the use of SDF assays and investigate the barriers and limitations that clinicians face in incorporating these tests into their practice. MATERIALS AND METHODS: Clinicians managing male infertility were invited to complete an online survey on practices related to SDF diagnostic and treatment approaches. Their responses related to the technical aspects of SDF testing, current professional society guidelines, and the literature were used to generate expert recommendations via the Delphi method. Finally, challenges related to SDF that the clinicians encounter in their daily practice were captured. RESULTS: The survey was completed by 436 reproductive clinicians. Overall, terminal deoxynucleotidyl transferase deoxyuridine triphosphate Nick-End Labeling (TUNEL) is the most commonly used assay chosen by 28.6%, followed by the sperm chromatin structure assay (24.1%), and the sperm chromatin dispersion (19.1%). The choice of the assay was largely influenced by availability (70% of respondents). A threshold of 30% was the most selected cut-off value for elevated SDF by 33.7% of clinicians. Of respondents, 53.6% recommend SDF testing after 3 to 5 days of abstinence. Although 75.3% believe SDF testing can provide an explanation for many unknown causes of infertility, the main limiting factors selected by respondents are a lack of professional society guideline recommendations (62.7%) and an absence of globally accepted references for SDF interpretation (50.3%). CONCLUSIONS: This study represents the largest global survey on the technical aspects of SDF testing as well as the barriers encountered by clinicians. Unified global recommendations regarding clinician implementation and standard laboratory interpretation of SDF testing are crucial
A megaxion at 750 GeV as a first hint of low scale string theory
Journal of High Energy Physics 2016.7 (2016): 021 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Low scale string models naturally have axion-like pseudoscalars which couple directly to gluons and photons (but not Wâs) at tree level. We show how they typically get tree level masses in the presence of closed string fluxes, consistent with the axion discrete gauge symmetry, in a way akin of the axion monodromy of string inflation and relaxion models. We discuss the possibility that the hints for a resonance at 750 GeV recently reported at ATLAS and CMS could correspond to such a heavy axion state (megaxion). Adjusting the production rate and branching ratios suggest the string scale to be of order Ms â 7â104 TeV, depending on the compactification geometry. If this interpretation was correct, one extra Zâ gauge boson could be produced before reaching the string threshold at LHC and future collidersThis work is partially supported by the grants FPA2012-32828 and FPA2015-65929-P from the MINECO, the ERC Advanced Grant SPLE under contract ERC-2012-ADG-20120216-320421, the Consolider-Ingenio 2010 programme under grant MULTIDARK CSD2009-00064 and the grant SEV-2012-0249 of the âCentro de Excelencia Severo Ochoaâ Programm
- âŠ