346 research outputs found

    Volcanic hazard assessment at the Campi Flegrei caldera

    Get PDF
    Previous and new results from probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei, are assembled in a comprehensive assessment of volcanic hazards at the Campi Flegrei caldera, in order to compare the volcanic hazards related to the different types of events. Hazard maps based on a very wide set of numerical simulations, produced using field and laboratory data as input parameters relative to the whole range of fallout and pyroclastic-flow events and their relative occurrence, are presented. The results allow us to quantitatively evaluate and compare the hazard related to pyroclastic fallout and density currents (PDCs) in the Campi Flegrei area and its surroundings, including the city of Naples. Due to the dominant wind directions, the hazard from fallout mostly affects the area east of the caldera, and the caldera itself, with the level of probability and expected thickness decreasing with distance from the caldera and outside the eastern sectors. The hazard from PDCs decrease roughly radially with distance from the caldera centre and is strongly controlled by the topographic relief, which produces an effective barrier to propagation of PDCs to the east and northeast, areas which include metropolitan Naples. The main result is that the metropolitan area of Naples would be directly exposed to both fallout and PDCs. Moreover, the level of probability for critical tephra accumulation by fallout is relatively high, even for moderate-scale events, while, due to the presence of topographic barriers, the hazard from PDCs is only moderate and mostly associated with the largest events

    Performance evaluation of an ORC unit integrated to a waste heat recovery system in a steel mill

    Get PDF
    Waste heat revalorization creates interesting opportunities to energy intensive industries. In the present project, a large-scale ORC pilot plant along with a waste heat recovery unit (WHRU) in a steel mill has been designed, commissioned and operated. The plant is part of the European Commission funded PITAGORAS project and it has been installed at ORI MARTIN in Brescia (Italy). Waste heat is recovered from the fumes of the Electric Arc Furnace (EAF) to produce saturated steam which is then delivered to a district heating (DH) network during heating season and to the ORC for electricity generation during the rest of the year. The main challenge was the integration of these systems in a single plant since the heat source is highly unstable and steady heat load is preferable for the DH and ORC for their safe operation. A steam accumulator of 150m3 volume was implemented between the WHRU and the ORC/DH systems to maintain a steady discharge pressure, to reduce the fast transients and to extend the supply over longer periods. The ORC has a nominal power output of 1,8MW and the preliminary results of the first weeks of operation of the ORC unit resulted in a net efficiency of 21.7%. Currently the plant is undergoing monitoring campaign which will provide additional data to further evaluate and optimize the system.The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° ENER / FP7EN / 314596 / PITAGORAS

    Shear instabilities of freely standing thermotropic smectic-A films

    Full text link
    In this Letter we discuss theoretically the instabilities of thermotropic freely standing smectic-A films under shear flow\cite{re:wu}. We show that, in Couette geometry, the centrifugal force pushes the liquid crystal toward the outer boundary and induces smectic layer dilation close to the outer boundary. Under strong shear, this effect induces a layer buckling instability. The critical shear rate is proportional to 1/d1/\sqrt{d}, where dd is the thickness of the film.Comment: 12 pages, 2 figure

    Planting time for maximization of yield of vinegar plant calyx (Hibiscus sabdariffa L.)

    Get PDF
    Objetivou-se avaliar a produtividade de cálices de Hibiscus sabdariffa L., planta medicinal, em quatro épocas de plantio em Lavras M.G. Os tratamentos foram quatro épocas de plantio (18 de outubro; 15 de novembro; 18 de dezembro de 2001 e 15 de janeiro de 2002) e realizada uma colheita quando praticamente não existiam cálices em desenvolvimento, quase no final do ciclo da planta. Foram considerados os números de cálices por planta, as fitomassas frescas e secas dos cálices e a qualidade. Concluiu-se que a época de plantio influenciou o rendimento por planta e as fitomassas frescas e secas dos cálices, diferindo entre si pelo teste de Tukey a 5%. No plantio de outubro, houve maior rendimento (2.522 kg/ha), com produção de 5,24 vezes a mais em relação ao plantio do mês de janeiro (481 kg/ha). Os plantios nos meses de novembro e dezembro tiveram produções de 1.695 e 1.093 kg.ha-1 de cálices secos, respectivamente, e em relação ao mês de janeiro, a produção foi 3,52 e 2,27 vezes a mais.Deve-se realizar a colheita assim que os cálices estiverem maduros, a fim de preservar a qualidade

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    Thermodynamics and structure of self-assembled networks

    Full text link
    We study a generic model of self-assembling chains which can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micells, dipolar fluids and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. The model is solved in the mean field approximation. It is found that despite the absence of any specific interaction between the chains, the entropy of the junctions induces an effective attraction between the monomers, which in the case of three-fold junctions leads to a first order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. Independent of the phase separation, we predict the percolation (connectivity) transition at which an infinite network is formed that partially overlaps with the first-order transition. The percolation transition is a continuous, non thermodynamic transition that describes a change in the topology of the system. Our treatment which predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation correlation has a usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying an onset of medium-range order in the system. Implications of the results for different physical systems are discussed.Comment: Submitted to Phys. Rev.

    Shear induced instabilities in layered liquids

    Full text link
    Motivated by the experimentally observed shear-induced destabilization and reorientation of smectic A like systems, we consider an extended formulation of smectic A hydrodynamics. We include both, the smectic layering (via the layer displacement u and the layer normal p) and the director n of the underlying nematic order in our macroscopic hydrodynamic description and allow both directions to differ in non equilibrium situations. In an homeotropically aligned sample the nematic director does couple to an applied simple shear, whereas the smectic layering stays unchanged. This difference leads to a finite (but usually small) angle between n and p, which we find to be equivalent to an effective dilatation of the layers. This effective dilatation leads, above a certain threshold, to an undulation instability of the layers. We generalize our earlier approach [Rheol. Acta, vol.39(3), 15] and include the cross couplings with the velocity field and the order parameters for orientational and positional order and show how the order parameters interact with the undulation instability. We explore the influence of various material parameters on the instability. Comparing our results to recent experiments and molecular dynamic simulations, we find a good qualitative agreement.Comment: 15 pages, 12 figures, accepted for publication in PR

    Critical research on populism: Nine rules of engagement

    Get PDF
    This article formulates precise questions and ‘rules of engagement’ designed to advance our understanding of the role populism can and should play in the present political conjuncture, with potentially significant implications for critical management and organization studies and beyond. Drawing on the work of Ernesto Laclau and others working within the post-Marxist discourse theory tradition, we defend a concept of populism understood as a form of reason that centres around a claim to represent ‘the people’, discursively constructed as an underdog in opposition to an illegitimate ‘elite’. A formal discursive approach to populism brings with it important advantages. For example, it establishes that a populist logic can be invoked to further very different political goals, from radical left to right, or from progressive to regressive. It sharpens too our grasp of important issues that are otherwise conflated and obfuscated. For instance, it helps us separate out the nativist and populist dimensions in the discourses of the United Kingdom Independence Party (UKIP), Trump or the Front National (FN). Our approach to populism, however, also points to the need to engage with the rhetoric about populism, a largely ignored area of critical research. In approaching populism as signifier, not only as a concept, we stress the added need to focus on the uses of the term ‘populism’ itself: how it is invoked, by whom, and to what purpose and effect. This, we argue, requires that we pay more systematic attention to anti-populism and ‘populist hype’, and reflect upon academia’s own relation to populism and anti-populism

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
    corecore