244 research outputs found

    Design of Passive down Draft Cool Tower for 100 m2 Auditorium

    Full text link
    A passive down draft evaporative cooling (PDEC) tower is design to capture the wind at high temperature typically at 40ο C and above the top of tower and cool the outdoor air using water which is allowed to flow through shower and due to evaporation of water out door air gets cooled. Many different types of PDEC exist. This paper explains design of PDEC tower. It is a parallel flow heat exchanger with hot and cold fluid are in direct contact with each other. The wet bulb temperature of air is the lowest possible temperature of the air leaving the tower and entering in air conditioned space. It is suitable in hot dry climate due to large difference between dry and wet bulb temperatures. The mathematical model predicted with the variation of wind speed from 1 m/s to 6 m/s with outside air temperature 35 ο C and relative humidity 20 %, a tower height of 6 m is required

    Interaction of CO with Surface PdZn Alloys

    Get PDF
    The adsorption and bonding configuration of CO on clean and Zn-covered Pd(111) surfaces was studied using Low Energy Electron Diffraction (LEED), Temperature Programmed Desorption (TPD) and High Resolution Electron Energy Loss Spectroscopy (HREELS). LEED and TPD results indicate that annealing at 550 K is sufficient to induce reaction between adsorbed Zn atoms and the Pd(111) surface resulting in the formation of an ordered surface PdZn alloy. Carbon monoxide was found to bond more weakly to the Zn/Pd(111) alloy surfaces compared to clean Pd(111). Zn addition was also found to alter the preferred adsorption sites for CO from threefold hollow to atop sites. Similar behavior was observed for supported Pd-Zn/Al2O3 catalysts. The results of this study show that both ensemble and electronic effects play a role in how Zn alters the interactions of CO with the surface

    Stability of bimetallic Pd-Zn catalysts for the steam reforming of methanol

    Get PDF
    ZnO-supported palladium-based catalysts have been shown in recent years to be both active and selective towards the steam reforming of methanol, although they are still considered to be less active than traditional copper-based catalysts. The activity of PdZn catalysts can be significantly improved by supporting them on alumina. Here we show that the Pd/ZnO/Al2O3 catalysts have better long-term stability when compared with commercial Cu/ZnO/Al2O3 catalysts, and that they are also stable under redox cycling. The Pd/ZnO/Al2O3 catalysts can be easily regenerated by oxidation in air at 420 °C followed by re-exposure to reaction conditions at 250 °C, while the Cu/ZnO based catalysts do not recover their activity after oxidation. Reduction at high temperatures (>420 °C) leads to Zn loss from the alloy nanoparticle surface resulting in a reduced catalyst activity. However, even after such extreme treatment, the catalyst activity is regained with time on stream under reaction conditions alone, leading to highly stable catalysts. These findings illustrate that the nanoparticle surface is dynamic and changes drastically depending on the environment, and that elevated reduction temperatures are not necessary to achieve high CO2 selectivity

    Fischer-Tropsch synthesis on bimetallic ruthenium-gold catalysts

    Full text link
    The effect of Au in the behavior of Ru as a Fischer-Tropsch catalyst was studied. Two series of catalysts were investigated, one supported on SiO2 and the other on MgO. Au did not seem to alter the product distribution on Ru at pressures up to 1 MPa and in the temperature range 490-570 K. However, the turnover frequencies for both CO hydrogenation and methanation showed a precipitous drop with the Au content in the SiO2-supported catalysts, whereas on the MgO series a maximum in activity was observed at an intermediate Au content. These activity patterns were correlated with extensive physical characterization placing major emphasis on analytical electron microscopy. The activity trends as a function of Au content were remarkably similar to those previously reported for the structure-sensitive ethane hydrogenolysis reaction. In both reactions, the effect of Au appears to be due to a dilution of the active Ru ensembles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25650/1/0000202.pd

    PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift

    Get PDF
    Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 360ºC without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming

    Influence of chlorine on the surface area and morphology of TiO2

    Full text link
    Changes in BET surface area and morphology of TiO2 (anatase) were studied as a function of temperature and level of chlorine contamination. The objPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25842/1/0000405.pd

    Gold-titania interactions: Temperature dependence of surface area and crystallinity of TiO2 and gold dispersion

    Full text link
    The influence of temperature on the BET surface area, crystallinity, and anatase/rutile phase transformation of blank TiO2 and Au/TiO2 catalysts is studied. Presence of gold delays the recrystallization of anatase and the phase transformation into rutile. In turn, high gold dispersions are stabilized by TiO2 up to a temperature of 700 [deg]C. Agglomeration of gold into large particles coincides with the phase transformation into rutile at 800 [deg]C. The stability of the gold dispersion does not seem to be due to an SMSI effect. The low metal loading used to impregnate a high-surface-area TiO2 may be responsible for either an incorporation of gold atoms in interstitial positions of the TiO2 lattice, or the trapping of small gold particles in micropores.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24832/1/0000258.pd

    Catalytic reactivity of face centered cubic PdZn<sub>α</sub> for the steam reforming of methanol

    No full text
    Addition of Zn to Pd changes its catalytic behavior for steam reforming of methanol. Previous work shows that improved catalytic behavior (high selectivity to CO2) is achieved by the intermetallic, tetragonal L10 phase PdZnβ1, where the Pd:Zn ratio is near 1:1. The Pd–Zn phase diagram shows a number of other phases, but their steady-state reactivity has not been determined due to the difficulty of precisely controlling composition and phase in supported catalysts. Hence, the role of Zn on Pd has generally been studied only on model single crystals where Zn was deposited on Pd(1 1 1) with techniques such as TPD and TPR of methanol or CO. The role of small amounts of Zn on the steady-state reactivity of Pd–Zn remains unknown. Therefore, in this work, we have synthesized unsupported powders of phase pure PdZnα, a solid solution of Zn in fcc Pd, using a spray pyrolysis technique. The surface composition and chemical state were studied using Ambient Pressure-XPS (AP-XPS) and were found to match the bulk composition and remain so during methanol steam reforming (MSR) (Ptot = 0.25 mbar). Unlike the PdZnβ11 phase, we find that PdZnα is 100% selective to CO during methanol steam reforming with TOF at 250 °C of 0.12 s−1. Steady-state ambient pressure micro-reactor experiments and vacuum TPD of methanol and CO show that the α phase behaves much like Pd, but Zn addition to Pd improves TOF since it weakens the Pd–CO bond, eliminating the poisoning of Pd by CO during MSR over Pd. The measured selectivity for fcc PdZnα therefore confirms that adding small amounts of Zn to Pd is not enough to modify the selectivity during MSR and that the PdZnβ1 tetragonal structure is essential for CO2 formation during MSR

    Eutectic Colony Formation: A Stability Analysis

    Full text link
    Experiments have widely shown that a steady-state lamellar eutectic solidification front is destabilized on a scale much larger than the lamellar spacing by the rejection of a dilute ternary impurity and forms two-phase cells commonly referred to as `eutectic colonies'. We extend the stability analysis of Datye and Langer for a binary eutectic to include the effect of a ternary impurity. We find that the expressions for the critical onset velocity and morphological instability wavelength are analogous to those for the classic Mullins-Sekerka instability of a monophase planar interface, albeit with an effective surface tension that depends on the geometry of the lamellar interface and, non-trivially, on interlamellar diffusion. A qualitatively new aspect of this instability is the occurence of oscillatory modes due to the interplay between the destabilizing effect of the ternary impurity and the dynamical feedback of the local change in lamellar spacing on the front motion. In a transient regime, these modes lead to the formation of large scale oscillatory microstructures for which there is recent experimental evidence in a transparent organic system. Moreover, it is shown that the eutectic front dynamics on a scale larger than the lamellar spacing can be formulated as an effective monophase interface free boundary problem with a modified Gibbs-Thomson condition that is coupled to a slow evolution equation for the lamellar spacing. This formulation provides additional physical insights into the nature of the instability and a simple means to calculate an approximate stability spectrum. Finally, we investigate the influence of the ternary impurity on a short wavelength oscillatory instability that is already present at off-eutectic compositions in binary eutectics.Comment: 26 pages RevTex, 14 figures (28 EPS files); some minor changes; references adde

    Eutectic colony formation: A phase field study

    Full text link
    Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macroscopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity and we investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis [M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a destabilization of the front by long-wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assumption commonly attributed to Cahn that lamella grow perpendicular to the envelope of the solidification front is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.
    • …
    corecore