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Abstract
Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-
water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a
maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based
catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 360ºC
without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO
concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1.
During methanol steam reforming, the CO selectivities were observed to be lower than the calculated
equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate
constants were approximately of the same magnitude for both WGS and methanol steam reforming. These
results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol
steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam
reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in
methanol steam reforming.
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Abstract 

Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam 

reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be 

dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, 

which was comparable to that of a commercial Pt-based catalyst. The catalyst stability 

was demonstrated for 100 hours time-on-stream at a temperature of 3600C without 

evidence of metal sintering. WGS reaction rates were approximately 1st order with 

respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ 

mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities 

were observed to be lower than the calculated equilibrium values over a range of 

temperatures and steam/carbon ratios studied while the reaction rate constants were 

approximately of the same magnitude for both WGS and methanol steam reforming.  

These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not 

involved in methanol steam reforming.  RWGS rate constants are on the order of about 

20 times lower than that of methanol steam reforming, suggesting that RWGS reaction 

could be one of the sources for small amount of CO formation in methanol steam 

reforming.   

 

Key words: PdZnAl catalyst, water-gas-shift (WGS), methanol steam reforming, reverse-

water-gas-shift, fuel processing.  

 

 

 

 

 

 

 

 

 

 



 

 

1. Introduction 

As fuel cell research and development has become a flourishing area in recent years, fuel 

processing, including hydrogen generation, purification, and storage, is drawing a great 

deal of attention. Fuel cell systems are being developed for several applications, 

including distributed and portable power generation and other consumer applications [1-

3]. Reforming of hydrocarbons is typically conducted at high temperatures, and water-

gas-shift (WGS) is normally required to reduce the CO concentration in the reformate 

from as high as 15% down to 1-2% [4]. WGS technology for large scale applications is a 

well-established commercial process. The WGS reaction (1) is an equilibrium controlled, 

mildly exothermic reaction:    

 

CO + H2O ↔ CO2 + H2 ΔH0  = -41.1 kJ/mol     (1) 

 

For conventional industrial applications two types of WGS catalysts are used.  Fe-based 

high-temperature-shift (HTS) catalysts typically operate around 400-5500C. Because 

these catalysts are less susceptible to poisons, it is preferable  to convert the bulk of the 

CO at higher temperatures for many commercial applications [5]. A more active Cu-

based catalyst is typically used as a low-temperature shift (LTS) catalyst at 200–2500C 

[5]. Conventional WGS catalysts are not seen as attractive options for small-to-medium 

scale fuel cell systems. Fe-based HTS catalysts are far too inactive and pose serious 

volume and weight restraints. Cu-based LTS catalysts are very active at lower 

temperatures, but they become unstable at higher temperatures (>2800C) and their 

pyrophoric nature makes them undesirable for safe and efficient operation [6]. Interest in 

WGS technology has grown significantly over the last few years as a result of recent 

advancements in fuel cell technology and the need to develop advanced fuel processors 

for conversion of hydrocarbon fuels into hydrogen.  Several catalyst types have been 

studied as potential alternatives.   

 



The most promising types of WGS catalysts, and those most extensively studied, have 

been Pt-CeO2 based [6-9]. However, instability of this catalyst under fuel processing 

conditions has been a recurring problem [8-10].  There is much debate over what 

deactivation mechanisms are actually involved, and research on the Pt-CeO2 based 

catalyst continues with a particular emphasis on increasing catalytic activity and stability. 

 

Recently, a PdZn alloy catalyst was shown to have the activity and selectivity for 

methanol steam reforming comparable to that of Cu based catalysts [11-13], while it 

differs significantly from that of metallic Pd [14-20].  While Pd predominantly produces 

CO and H2 (methanol decomposition, reaction 2), the main products are CO2 and H2 

(methanol steam reforming, reaction 3) on the PdZn alloy catalyst.  More importantly, the 

PdZn alloy catalyst exhibits improved thermal stability [13].  Previous studies also 

reported that PdZn is not only highly active for methanol reforming, but also for other 

reactions such as dehydrogenation/coupling of methanol to acetic acid [12] and methanol 

oxidation [21, 22]. Tsai et al. reported that an explanation for the identical catalytic 

function for PdZn and Cu is due to the fact that PdZn exhibits a similar valence electron 

density of states as pure Cu [23]. In a separate study by Neyman et al, the valence band 

spectrum of the PdZn alloy was found to resemble closely the spectrum of Cu (111), in 

good agreement with the calculated density of states for a PdZn alloy of 1:1 

stoichiometry and implying close similarities in the reactivity of PdZn and Cu [24]. Since 

Cu possesses excellent WGS reactivity, it has prompted us to evaluate the WGS activity 

of PdZn alloy catalyst which may potentially be more stable at elevated temperatures.  

 

CH3OH → CO + 2H2   ΔH0 = 92.0 kJ/mol   (2) 

CH3OH + H2O → CO2 + 3H2  ΔH0 = 49.5 kJ/mol   (3) 

 

This paper focuses on some recent findings that suggest the PdZnAl type catalyst which, 

up until now has exclusively been developed for the methanol steam reforming reaction, 

also appears to be active for the WGS reaction. Kinetic comparisons for the WGS, 

methanol steam reforming (SR), and reverse-water-gas shift (RWGS) rates were made to 

identify the potential roles of WGS and RWGS in the methanol steam reforming reaction.  



 

2. Experimental  

Al2O3 supported Pd-ZnO catalysts were prepared using a one-step co-impregnation 

method. Specifically, a concentrated palladium nitrate solution (20.19 wt% Pd, Engelhard 

Corp.) was mixed with Zn(NO3)2•6H2O (99.5%, Aldrich) at 60oC. A neutral γ-Al2O3 

support (Engelhard Corp.) with a BET surface area of 230 m2 g-1 was pre-calcined at 

500oC for 2 hrs and kept at 110oC prior to the incipient-wetness impregnation step. The 

support was impregnated at 60oC with an appropriate amount of the pre-mixed Pd and Zn 

nitrate solution to obtain the final products with various Pd loadings (7.3 to 13.2 wt%) 

and Pd/Zn molar ratios (0.25 to 0.76) while keeping the total weight percentage of Pd and 

Zn constant (25wt%). The wet sample was kept at 60oC for 1 hour before drying in air at 

110oC overnight. The dried sample was then calcined at 350oC for 3 hours. For 

comparison purposes, a commercial LTS CuZnAl catalyst and Pt-metal based WGS 

catalyst were also studied. 

 

WGS activity tests were conducted in a 7-mm ID fixed-bed quartz tube reactor at ambient 

pressure. Two K-type thermocouples were installed in the reactor for the measurement of 

inlet and catalyst bed temperatures. Catalyst (0.100 g) was mixed with 0.500 g SiC (inert 

dilutent) to maintain isothermal conditions, and placed in the reactor. The catalyst was 

reduced using 10% H2/Ar gas mixture at 400oC for 2 hours prior to the test. Feed to the 

test bed was a gas blend intended to simulate effluent from a propane wet partial 

oxidation reactor. A pre-mixed gas containing 14.5% CO, 3.6% CO2, 35.8% H2, and 

46.1% N2 (Matheson) was introduced into the system using a mass flow controller 

(Brooks 5850E series). The dry pre-mixture was mixed with water in a vaporizer at 

200oC before being introduced to the reactor. Water was fed using a syringe pump (Cole 

Parmer 74900 series). Unless otherwise reported, the resulting wet feed mixture 

contained 31.6% H2, 12.6% CO, 3.2% CO2, 12.6% H2O, and 40.0% N2. A condenser and 

a desiccant bed were used to dry the product stream before analysis. The gaseous effluent 

was analyzed using a micro-GC (MTI) equipped with MS-5A and PPQ columns and a 

thermal conductivity detector.  

 



Methanol steam reforming and kinetic rate tests were conducted using the same 

experimental setup. Using a syringe pump, pre-mixed H2O/CH3OH solutions were 

introduced into the vaporizer and reactor for reforming tests. WGS kinetic rate 

measurements were conducted by feeding an equimolar mixture of CO and H2O. A 

syringe pump was used for the water introduction. RWGS kinetic rate measurements 

were conducted by feeding an equimolar mixture of CO2 and H2.    

 

A JEOL 2010 high-resolution transmission electron microscope (TEM) was used to 

obtain the microstructures of samples. Small amounts of powder catalysts were first 

embedded in a hard grade LR white resin and cured at 60ºC for 6 hrs. The hardened 

polymer bars were sectioned into 50 nm thick slices and collected onto copper grids with 

Formvar/carbon support film.   

  

3. Results and Discussion 

3.1. The effects of Pd loading and Pd/Zn ratio on the WGS reaction 

Similar to a previously conducted study of methanol steam reforming catalyst [11], a 

series of catalysts with various Pd loadings and Pd:Zn ratios were prepared on a high 

surface area Al2O3 support. Catalyst composition information is shown in Table 1. For 

each sample, the total amount of Pd and Zn on the Al2O3 support was kept constant at 

25wt% while the ratio of Pd:Zn was varied. Catalytic activity comparisons were made 

using a feed blend representing typical effluent from that of a propane wet partial 

oxidation reaction. This resulting WGS feed composition as stated above was used at a 

GHSV of 40,000 hr-1. These conditions simulate a relatively fast throughput and 

demanding shift requirements, which include a low H2O:CO ratio (~1.0) and high 

CO:CO2 ratio (~4.0). Figure 1 shows the CO conversion as a function of Pd:Zn molar 

ratio at a reaction temperature of 325oC. While CO conversion slightly increases with the 

Pd:Zn ratio from 0.28 to 0.50, a sharp decrease in CO conversion from 47% to 24% was 

observed when Pd:Zn ratio increases from 0.50 to 0.76. However, there may be an 

optimum in activity around Pd:Zn = 0.50 whereas for higher ratios conversion 

dramatically decreases.      

 



As we reported previously using XRD and TEM characterizations, crystallinity of PdZn 

alloy increases with the Pd:Zn ratio and metallic Pd was found in the catalysts with a 

Pd:Zn ratio of 0.76 [11]. It is also well known that metallic Pd on Al2O3 alone is not 

active for WGS [25]. Therefore, it is reasonable to attribute the initial increase in CO 

conversion with the Pd:Zn ratio to the increased level of PdZn alloy in the catalysts 

(Figure 1). At a Pd:Zn ratio >0.5 such as in the case of PdZnAl-0.76, the surface 

composition of PdZn alloy may deviate from an optimum Pd/Zn ratio. Another 

possibility is that the presence of metallic Pd may dilute the amount of surface PdZn 

alloy and explain the drop in CO conversion since metallic Pd alone is not very active for 

WGS.  

    

It should be noted that this series of catalysts were also very selective towards CO2. No 

methanation was observed (with a GC detection limit of 300 ppm) for the entire 

temperature range investigated, up to 4000C. While on the Pt/CeO2 catalysts, it has been 

reported that methane formation begins to occur at temperatures >3750C under WGS 

conditions [6, 25].  

 

For the most active WGS catalyst found in this series, PdZnAl-0.50, the 1st order WGS 

kinetics with respect to CO was assumed.  The rate constants as a function of temperature 

are depicted in Figure 2.  From Figure 2, kinetic parameters were determined to be: 

Ea=58.3 kJ/mol, k0=6.1X107 min-1.  

 

3.2. Comparison to commercial precious metal based catalyst 

Activity performance for the PdZnAl-0.50 is compared to both a commercial Cu-based 

low-temperature shift (LTS) catalyst and a commercial Pt-based WGS catalyst, as shown 

in Figure 3. The same feed composition as that in Figure 1 was used, however, at a lower 

space velocity of GHSV=7660 hr-1 for lower temperature operation. Typically Cu-based 

catalysts are kept below 2800C to minimize any potential metal sintering [6]. Under these 

conditions, it can be seen that the commercial Cu-based catalyst is the most active 

catalyst while the commercial Pt-based exhibits similar activity with the PdZnAl-0.50 

catalyst. At a temperature of 2380C, for example, the Cu-,Pt-,and PdZn-based catalysts 



have conversions of approximately 78.2%, 51.3%, and 47.9% respectively.   As 

mentioned above, similar valence electron density between Cu and PdZn may suggest 

similar activities between these two catalysts.  However, the activities were measured and 

compared under an identical GHSV which may not reflect the intrinsic activity difference 

between these two catalysts.    

 

The high activity of the Cu-based catalyst is well known, but as discussed earlier, it has 

its drawbacks in terms of practical usage for fuel processing applications due to its high 

affinity for sintering at elevated temperatures and pyrophoricity in oxidizing 

environments [6]. The search for alternative WGS catalysts to overcome the drawbacks 

of Cu, such as Pt-based catalysts, has been the focal point of most recent studies.  

Precious metals supported on “reducible’ type supports such as CeO2 or CeO2/ZrO2 

mixtures have been well reported [7, 26]. Although PdZn alloy catalysts have been well 

studied as of late for methanol steam reforming, their potential applications in WGS have 

not been reported in open literature to our best knowledge. In fact, reports focusing on the 

role that WGS plays in the methanol steam reforming mechanism have predominately 

confirmed that the WGS functionality is negligible [13, 27].  In this current study, it was 

found that the PdZnAl-0.50 catalyst exhibits excellent WGS activity, which is 

comparable to the Pt-Ceria based catalysts. While high initial activity is well 

documented, many groups have reported stability issues for the Pt-Ceria catalyst type [9, 

10]. One of the objectives in this study was to obtain the preliminary information on the 

stability of the PdZnAl-0.50 catalyst under WGS conditions. 

 

3.3 Stability of PdZnAl catalyst under WGS conditions 

Figure 4 depicts CO conversion versus time-on-stream (TOS) comparing PdZnAl-0.50 

and a commercial Pt-based catalyst. The catalysts were tested for approximately 100 

hours under a relatively fast throughput of GHSV=90,000 hr-1 at a temperature of 3600C. 

Initial conversions under these conditions for the PdZnAl-0.50 and Pt-based were 44.0% 

and 51.8%, respectively. After approximately 100hrs TOS, the conversions dropped to 

38.5% and 44.0%, respectively.  It can be seen that in the first few ~40 hours, there 

appears to be a small induction period after which PdZnAl-0.50 catalyst activity leveled 



out.  The commercial catalyst appeared to have a more gradual and constant deactivation. 

Despite initial step-wise deactivation, the PdZnAl catalyst shows promising stability even 

under relatively severe feed conditions – CO:CO2 =  4.0 and H2O:CO = 1.0. It should be 

noted that at each time interval shown in Figure 4 there were multiple data points taken. 

Each set of data were within approximately 2% experimental error.   

 

Early reports suggested that the use of CeO2 with Pt-based WGS catalysts would forever 

be problematic due to over-reduction of the ceria in highly reducing fuel processing 

environments [10]. Several groups have since refuted this claim[8, 28]. While some 

disagreement may still exist in the literature regarding the deactivation mechanism, much 

evidence exists to support Pt-sintering caused by CO and/or H2O [9]. To assess potential 

sintering issues, TEM pictures were taken for the samples after an initial reduction and 

after 100hrs TOS, as represented in Figure 5(a) and Figure 5(b), respectively. The PdZn 

crystallite size distribution is shown in Figure 6. The freshly reduced PdZnAl-0.50 mean 

crystallite size was found to be 4.48 +/- 0.88 nm. After approximately 100 hours TOS, it 

was found to be 4.41 +/- 0.99 nm. Apparently, TEM evidence shown in Figure 5 suggests 

that PdZn crystallites exhibited no statistical change in size. There is also little change in 

the size distribution as evidenced from Figure 6. In short, there was only a relatively 

small and initial decrease in CO conversion over the 100 hours TOS studies and no 

evidence for any substantial sintering of the PdZn particles was observed on the PdZnAl-

0.50 catalyst. It is possible that the initial, small decrease in conversion that was observed 

could be due to either the minor changes in crystallite size not quantitatively observed 

using a TEM counting method or restructuring of PdZn alloy under the WGS conditions.   

 

3.4 Methanol reforming and CO equilibrium considerations 

The excellent WGS activity observed on the PdZn catalysts prompted us to study the 

potential involvement of WGS in methanol steam reforming. A PdZnAl-0.38 catalyst was 

studied over a range of temperatures and H2O:CH3OH ratios. This particular catalyst was 

chosen since it exhibited excellent activity for methanol steam reforming [11] while 

showing similar WGS activity as that of the PdZnAl-0.50 catalyst (Figure 1). Figure 7 

shows the methanol conversion and CO selectivity as a function of temperature at 



H2O:CH3OH = 1.8 and GHSV = 12,840 hr-1. In Figure 7, it can be seen that in the 

temperature range of from 2440C to 3040C, the CO selectivity levels remain well below 

those dictated by thermodynamics. In Figure 8, CO selectivity is shown as a function of 

H2O:CH3OH ratio at 2200C while keeping the GHSV constant at 12,840 hr-1 and 

methanol partial pressure constant at 0.21atm. H2O:CH3OH ratio was varied from 1.0 to 

1.8 (molar). Again, CO selectivities remain well below equilibrium along the entire 

H2O:CH3OH range investigated, even at H2O:CH3OH = 1.0, which is stoichiometric 

according to the reforming reaction (2). CO selectivities range from 1.9 to 1.2 as 

H2O:CH3OH is varied from 1.0 to 1.8. These results are consistent with previous reports 

that CO levels well below equilibrium were observed on PdZn alloy catalysts [3, 12, 19]. 

Therefore, the methanol steam reforming pathway must not involve WGS. However, as 

this report suggests above PdZnAl is active specifically for the WGS reaction.  

 

It can also be seen from Figure 8 that the methanol conversion does not vary with 

H2O:CH3OH significantly, indicating that the effect of water partial pressure is negligible 

in the rate expression under these conditions. This zero order dependence confirms our 

previous report for a PdZn catalyst [29]. From a practical point of view, such a kinetic 

performance is highly desired since a high single path conversion can be achieved at 

close to a stoichiometric H2O:CH3OH ratio without the need of excess steam. 

 

3.5 Rate comparisons for SR, WGS,& RWGS reactions  

In this last section we compare the rates of three reactions:  1) methanol steam reforming 

(SR), 2) WGS, and 3) RWGS.  Additionally, a discussion of the interrelationships of 

WGS and RWGS involved in the methanol reforming pathway is made.  

 

For the methanol steam reforming reaction, metallic Pd and defect PdZn alloy sites have 

previously been attributed to the CO formation on PdZn catalysts [16, 30]. To elucidate 

the potential involvement of RWGS on PdZn alloy for CO formation, kinetic rate 

constants were measured for the reactions comparing methanol steam reforming, WGS, 

and RWGS on the PdZnAl-0.38 catalyst. In Figure 9 the rate constants as a function of 

temperature are shown for three separately performed reactions. All three sets of 



reactions were run using the integral method, using in some cases high conversions which 

correspond to more realistic conditions but operating below equilibrium. WGS and 

RWGS reactions were operated under a wide temperature range; at 2200C, 3000C, and 

3500C.  A representative set of methanol steam reforming data is shown using 

temperatures ranging from 2450C to 2830C. Feed ratios were CO:H2O = 1 for WGS and 

CO2:H2 = 1 for RWGS. All three reactions showed approximate 1st order dependence:  1st 

order in CO for WGS, 1st order in CO2 for RWGS, and 1st order in methanol for steam 

reforming. First order dependence of methanol for methanol steam reforming reaction on 

PdZn was also reported in our previous kinetics study [29]. The rate constants found 

under these realistic conditions can provide a rough baseline for comparing the apparent 

kinetics of methanol steam reforming, WGS, and RWGS on the PdZnAl-0.38 catalyst. 

Trend lines using a power law regression for each reaction are shown in Figure 9 for 

reference.       

 

From Figure 9 it can be seen that the rate constants for methanol steam reforming and 

WGS on the PdZnAl-0.38 catalyst are approximately the same whereas each are on the 

order of 20 times higher than RWGS, over the temperature range investigated. This may 

explain the role of CO formation in methanol steam reforming. As we discussed above, 

CO levels much less than predicted by equilibrium exist for the PdZn alloy catalyst in 

methanol steam reforming, suggesting a predominant reforming reaction pathway to CO2. 

CO formation in methanol steam reforming has been attributed to the decomposition of 

methanol (reaction 2) on metallic Pd, which may be present in PdZn alloy catalysts [14-

16]. It has also been reported that the TOF of methanol decomposition (reaction 2) on 

metallic Pd is about one order of magnitude lower than that on PdZn alloy for methanol 

steam reforming (reaction 3) [14, 15]. From Figure 9 it can be seen that RWGS is about 

one order of magnitude lower than WGS on the PdZnAl catalyst. Thus, it is apparent that 

RWGS rate on PdZn alloy and methanol decomposition on metallic Pd are of the same 

order of magnitude. Therefore, it is reasonable to also consider the RWGS on PdZn alloy 

catalyst as one possible reason for minor amount CO formation in methanol steam 

reforming in addition to methanol decomposition on metallic Pd.   

 



Conclusions 

A novel PdZnAl type catalyst was found to exhibit excellent WGS activity and stability, 

comparable to a commercial Pt-based catalyst. Although kinetic evaluations indicated 

that the WGS and methanol steam reforming rate constants are of the same order of 

magnitude, WGS is not involved in methanol steam reforming since less than equilibrium 

CO selectivities were observed over a wide range of temperatures and H2O:CH3OH ratios 

studied. It was also found that the reaction rates for RWGS are approximately 20 times 

lower than that for methanol steam reforming on PdZn alloy, but are of the similar order 

of magnitudes as that for methanol decomposition on metallic Pd. These findings suggest 

that the minor amount CO formation in methanol steam reforming may be attributed to 

RWGS on PdZn alloy in addition to methanol decomposition on metallic Pd.   
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Table 1: Catalyst composition details for the series of PdZnAl catalysts with varied 
Pd:Zn ratios (as determined by calculation).   

Sample ID Pd:Zn Pd 
  (mol:mol) (wt%) 

PdZnAl-0.25 0.25 7.3 
PdZnAl-0.38 0.38 8.9 
PdZnAl-0.50 0.50 11.1 
PdZnAl-0.76 0.76 13.2 
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CO=12.6%, CO2=3.2%, H2O=12.6%, N2=40.0%; temperature varied, GHSV varied 
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Figure 1: Effect of Pd:Zn molar ratio on CO conversion under WGS reaction conditions 
at 3250C (feed composition:  H2=31.6%, CO=12.6%, CO2=3.2%, H2O=12.6%, 
N2=40.0%; GHSV=40,000 hr-1). 
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Figure 2:  Arrhenius plot for the water-gas shift (WGS) reaction for the PdZnAl-0.50 
catalyst, assuming 1st order kinetics (feed composition kept constant:  H2=31.6%, 
CO=12.6%, CO2=3.2%, H2O=12.6%, N2=40.0%; temperature varied, GHSV varied 
=7660, 10,227, and 20,455 hr-1). 
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Figure 3:  Activity comparison of PdZnAl-0.50 to commercial Cu-based low-
temperature shift (LTS) and commercial Pt-based WGS catalysts (feed composition:  
H2=31.6%, CO=12.6%, CO2=3.2%, H2O=12.6%, N2=40.0%; GHSV=7660 hr-1). 
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Figure 4:  Stability comparison of PdZnAl-0.50 to commercial Pt-based WGS catalyst 
(feed composition:  H2=31.6%, CO=12.6%, CO2=3.2%, H2O=12.6%, N2=40.0%; 
Temperature=3600C; GHSV=90,000 hr-1; ~100 hrs TOS). 
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Figure 5:  TEM pictures for the PdZnAl-0.50 catalyst (a) after initial reduction and (b) 
after 100hrs TOS (reaction feed composition:  H2=31.6%, CO=12.6%, CO2=3.2%, 
H2O=12.6%, N2=40.0%; Temperature=3600C; GHSV=90,000 hr-1). 
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Figure 6:  Particle size distribution from TEM analysis for the PdZnAl-0.50 catalyst after 
initial reduction and after 100hrs TOS (reaction feed composition:  H2=31.6%, 
CO=12.6%, CO2=3.2%, H2O=12.6%, N2=40.0%; Temperature=3600C; GHSV=90,000 
hr-1). 
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Figure 7:  Methanol steam reforming conversion and CO selectivity temperature profiles 
for the PdZnAl-0.38 catalyst (GHSV=12,840 hr-1, H2O/C=1.8, PN2=0.25atm). 
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Figure 8:  Methanol conversion and CO selectivity as a function of H2O/C (mol) feed 
ratio for the PdZnAl-0.38 catalyst (Temperature=2200C.  GHSV=12,840 hr-1, 
PMeOH=0.21atm, PN2 varied to keep constant GHSV). 
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Figure 9:  Rate constant comparisons as a function of temperature for the PdZnAl-0.38 
catalyst for the methanol steam reforming (SR), water-gas shift (WGS), and reverse-
water-gas shift (RWGS) reactions. Power law regression trend lines are shown for each 
reaction. 
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