69,189 research outputs found
Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons
A method for clamping cytosolic free Ca2+ ([Ca2+]i) in cultures of rat sympathetic neurons at or below resting levels for several days was devised to determine whether Ca2+ signals are required for neurite outgrowth from neurons that depend on Nerve Growth Factor (NGF) for their growth and survival. To control [Ca2+]i, normal Ca2+ influx was eliminated by titration of extracellular Ca2+ with EGTA and reinstated through voltage-sensitive Ca2+ channels. The rate of neurite outgrowth and the number of neurites thus became dependent on the extent of depolarization by KCl, and withdrawal of KCl caused an immediate cessation of growth. Neurite outgrowth was completely blocked by the L type Ca2+ channel antagonists nifedipine, nitrendipine, D600, or diltiazem at sub- or micromolar concentrations. Measurement of [Ca2+]i in cell bodies using the fluorescent Ca2+ indicator fura-2 established that optimal growth, similar to that seen in normal medium, was obtained when [Ca2+]i was clamped at resting levels. These levels of [Ca2+]i were set by serum, which elevated [Ca2+]i by integral of 30 nM, whereas the addition of NGF had no effect on [Ca2+]i. The reduction of [Ca2+]o prevented neurite fasciculation but this had no effect on the rate of neurite elongation or on the number of extending neurites. These results show that neurite outgrowth from NGF-dependent neurons occurs over long periods in the complete absence of Ca2+ signals, suggesting that Ca2+ signals are not necessary for operating the basic machinery of neurite outgrowth
Consequences of Zeeman Degeneracy for van der Waals Blockade between Rydberg Atoms
We analyze the effects of Zeeman degeneracies on the long-range interactions
between like Rydberg atoms, with particular emphasis on applications to quantum
information processing using van der Waals blockade. We present a general
analysis of how degeneracies affect the primary error sources in blockade
experiments, emphasizing that blockade errors are sensitive primarily to the
weakest possible atom-atom interactions between the degenerate states, not the
mean interaction strength. We present explicit calculations of the van der
Waals potentials in the limit where the fine-structure interaction is large
compared to the atom-atom interactions. The results are presented for all
potential angular momentum channels invoving s, p, and d states. For most
channels there are one or more combinations of Zeeman levels that have
extremely small dipole-dipole interactions and are therefore poor candidates
for effective blockade experiments. Channels with promising properties are
identified and discussed. We also present numerical calculations of Rb and Cs
dipole matrix elements and relevant energy levels using quantum defect theory,
allowing for convenient quantitative estimates of the van der Waals
interactions to be made for principal quantum numbers up to 100. Finally, we
combine the blockade and van der Waals results to quantitatively analyze the
angular distribution of the blockade shift and its consequence for angular
momentum channels and geometries of particular interest for blockade
experiments with Rb.Comment: 16 figure
A theoretical review of the operation of vibratory stress relief with particular reference to the stabilization of large-scale fabrications
Vibratory stress relief (VSR) is widely used on large welded fabrications to stabilize the structures so that they do not distort during further machining or during operational duty. The level of applied stress achieved during VSR on such structures is only 5–10 per cent of the yield stress. It is, therefore, not obvious how these applied loads come to modify the level of residual stress. It is suggested here that the reason for the success of VSR applied to large fabrications lies (a) in the origin of the residual stresses and (b) in the partial relief of these residual stresses by the initiation of the transformation of retained austenite particles (in the size range from 1 to 25 µm) by the movement of dislocations into positions that are favourable for the nucleation of martensite embryos. The shear deformation associated with the transformation of retained austenite into martensite will reduce the residual stress field to the point where the stability of the structure may be assured
Automated Problem Decomposition for the Boolean Domain with Genetic Programming
Researchers have been interested in exploring the regularities and modularity of the problem space in genetic programming (GP) with the aim of decomposing the original problem into several smaller subproblems. The main motivation is to allow GP to deal with more complex problems. Most previous works on modularity in GP emphasise the structure of modules used to encapsulate code and/or promote code reuse, instead of in the decomposition of the original problem. In this paper we propose a problem decomposition strategy that allows the use of a GP search to find solutions for subproblems and combine the individual solutions into the complete solution to the problem
Macroscopic Symmetry Group Describes Josephson Tunneling in Twinned Crystals
A macroscopic symmetry group describing the superconducting state of an
orthorhombically twinned crystal of YBCO is introduced. This macroscopic
symmetry group is different for different symmetries of twin boundaries.
Josephson tunneling experiments performed on twinned crystals of YBCO determine
this macroscopic symmetry group and hence determine the twin boundary symmetry
(but do not experimentally determine whether the microscopic order parameter is
primarily d- or s-wave). A consequence of the odd-symmetry twin boundaries in
YBCO is the stability of vortices containing one half an elementary flux
quantum at the intersection of a twin boundary and certain grain boundaries.Comment: 6 pages, to be published in the Proceedings of the MOS96 Conference
in the Journal of Low Temperature Physic
Computer Program for Assessing the Economic Feasibility of Solar Energy for Single Family Residences and Light Commercial Applications
Computer program, SHCOST, was used to perform economic analyses of operational test sites. The program allows consideration of the economic parameters which are important to the solar system user. A life cycle cost and cash flow comparison is made between a solar heating system and a conventional system. The program assists in sizing the solar heating system. A sensitivity study and plot capability allow the user to select the most cost effective system configuration
The role of cell-cell adhesion in wound healing
We present a stochastic model which describes fronts of cells invading a
wound. In the model cells can move, proliferate, and experience cell-cell
adhesion. We find several qualitatively different regimes of front motion and
analyze the transitions between them. Above a critical value of adhesion and
for small proliferation large isolated clusters are formed ahead of the front.
This is mapped onto the well-known ferromagnetic phase transition in the Ising
model. For large adhesion, and larger proliferation the clusters become
connected (at some fixed time). For adhesion below the critical value the
results are similar to our previous work which neglected adhesion. The results
are compared with experiments, and possible directions of future work are
proposed.Comment: to appear in Journal of Statistical Physic
Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions
We demonstrate Rabi flopping of small numbers of atoms between
ground and Rydberg states with . Coherent population oscillations are
observed for single atom flopping, while the presence of two or more atoms
decoheres the oscillations. We show that these observations are consistent with
van der Waals interactions of Rydberg atoms.Comment: 4 pages, 6 figure
The Fed's entry into check clearing reconsidered
Check collection systems ; Federal Reserve System
Antiferromagnetism at T > 500 K in the Layered Hexagonal Ruthenate SrRu2O6
We report an experimental and computational study of magnetic and electronic
properties of the layered Ru(V) oxide SrRu2O6 (hexagonal, P-3 1m), which shows
antiferromagnetic order with a N\'eel temperature of 563(2) K, among the
highest for 4d oxides. Magnetic order occurs both within edge-shared octahedral
sheets and between layers and is accompanied by anisotropic thermal expansivity
that implies strong magnetoelastic coupling of Ru(V) centers. Electrical
transport measurements using focused ion beam induced deposited contacts on a
micron-scale crystallite as a function of temperature show p-type
semiconductivity. The calculated electronic structure using hybrid density
functional theory successfully accounts for the experimentally observed
magnetic and electronic structure and Monte Carlo simulations reveals how
strong intralayer as well as weaker interlayer interactions are a defining
feature of the high temperature magnetic order in the material.Comment: Physical Review B 2015 accepted for publicatio
- …
