1,453 research outputs found

    A high sensitivity system for luminescence measurement of materials

    Get PDF
    The authors would like to thank the support of the Fundamental Research Funds for the Central Universities of China, the National Science Foundation of China (No.11205134) and Beijing Higher Education Young Elite Teacher Project (YETP0640). The refurbishment of the RLTLCL system at St Andrews was funded by NERC grant NE/H002715/1.A unique combined and multi-disciplinary wavelength multiplexed spectrometer is described. It is furnished with high-sensitivity imaging plate detectors, the power to which can be gated to provide time-resolved data. The system is capable of collecting spectrally resolved luminescence data following X-ray excitation [radioluminescence (RL) or X-ray excited optical luminescence (XEOL)], electron irradiation [cathodoluminescence (CL)] and visible light from light emitting diodes (LEDs) [photoluminescence (PL)]. Time-resolved PL and CL data can be collected to provide lifetime estimates with half-lives from microsecond timeframes. There are temperature stages for the high and low temperature experiments providing temperature control from 20 to 673 K. Combining irradiation, time resolved (TR) and TR-PL allows spectrally-resolved thermoluminescence (TL) and optically stimulated luminescence (OSL). The design of two detectors with matched gratings gives optimum sensitivity for the system. Examples which show the advantages and multi-use of the spectrometer are listed. Potential future experiments involving lifetime analysis as a function of irradiation, dose and temperature plus pump-probe experiments are discussed.PostprintPostprintPostprintPostprintPeer reviewe

    Hydrologic behaviour of Tapi river catchment using morphometric analysis

    Get PDF
    The study area Tapi River catchment covers 63,922.91 Sq.Km comprising of 5 five Sub-catchments: Purna river catchment (18,473.6 sq.km) Upper Tapi catchment (10,530.3 sq. km), Middle Tapi catchment (4,997.3 sq km), Girna river catchment (10,176.9 sq.km) and lower Tapi catchment (19,282.5 sq.km.). The drainage network of 5 Sub-catchments was delineated using remote sensing data. The morphometric analysis of 5 Sub-catchments has been carried out using GIS softwares – ArcMap. The drainage network showed that the terrain exhibits dendritic to sub-dendritic drainage pattern. Stream orders ranged from sixth to seventh order. Drainage density varied between 0.39 and 0.43km/ km2and had very coarse to coarse drainage texture. The relief ratio ranged from 0.003 to 0.007. The mean bifurcation ratio varied from 4.24 to 6.10 and falls under normal basin category. The elongation ratio showed that all catchment elongated pattern. Thus, the remote sensing techniques proved to be a competent tool in morphometric analysis

    Estrogen as therapy for breast cancer

    Get PDF
    High-dose estrogen was generally considered the endocrine therapy of choice for postmenopausal women with breast cancer prior to the introduction of tamoxifen. Subsequently, the use of estrogen was largely abandoned. Recent clinical trial data have shown clinically meaningful efficacy for high-dose estrogen even in patients with extensive prior endocrine therapy. Preclinical research has demonstrated that the estrogen dose-response curve for breast cancer cells can be shifted by modification of the estrogen environment. Clinical and laboratory data together provide the basis for developing testable hypotheses of management strategies, with the potential of increasing the value of endocrine therapy in women with breast cancer

    Coupling Of The B1g Phonon To The Anti-Nodal Electronic States of Bi2Sr2Ca0.92Y0.08Cu2O(8+delta)

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) on optimally doped Bi2Sr2Ca0.92Y0.08Cu2O(8+delta) uncovers a coupling of the electronic bands to a 40 meV mode in an extended k-space region away from the nodal direction, leading to a new interpretation of the strong renormalization of the electronic structure seen in Bi2212. Phenomenological agreements with neutron and Raman experiments suggest that this mode is the B1g oxygen bond-buckling phonon. A theoretical calculation based on this assignment reproduces the electronic renormalization seen in the data.Comment: 4 Pages, 4 Figures Updated Figures and Tex

    Quantitative analysis of Sr2RuO4 ARPES spectra: Many-body interactions in a model Fermi liquid

    Full text link
    ARPES spectra hold a wealth of information about the many-body interactions in a correlated material. However, the quantitative analysis of ARPES spectra to extract the various coupling parameters in a consistent manner is extremely challenging, even for a model Fermi liquid system. We propose a fitting procedure which allows quantitative access to the intrinsic lineshape, deconvolved of energy and momentum resolution effects, of the correlated 2-dimensional material Sr2RuO4. For the first time in correlated 2-dimensional materials, we find an ARPES linewidth that is narrower than its binding energy, a key property of quasiparticles within Fermi liquid theory. We also find that when the electron-electron scattering component is separated from the electron-phonon and impurity scattering terms it decreases with a functional form compatible with Fermi liquid theory as the Fermi energy is approached. In combination with the previously determined Fermi surface, these results give the first complete picture of a Fermi liquid system via ARPES. Furthermore, we show that the magnitude of the extracted imaginary part of the self-energy is in remarkable agreement with DC transport measurements.Comment: 10 pages, 5 figure

    Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor

    Get PDF
    A recent highlight in the study of high-Tc superconductors is the observation of band renormalization / self-energy effects on the quasiparticles. This is seen in the form of kinks in the quasiparticle dispersions as measured by photoemission and interpreted as signatures of collective bosonic modes coupling to the electrons. Here we compare for the first time the self-energies in an optimally doped and strongly overdoped, non-superconducting single-layer Bi-cuprate (Bi2Sr2CuO6). Besides the appearance of a strong overall weakening, we also find that weight of the self-energy in the overdoped system shifts to higher energies. We present evidence that this is related to a change in the coupling to c-axis phonons due to the rapid change of the c-axis screening in this doping range.Comment: 4 pages, 3 figure

    Structural origin of apparent Fermi surface pockets in angle-resolved photoemission of Bi2_2Sr2−x_{2-x}Lax_xCuO6+δ_{6+\delta}

    Full text link
    We observe apparent hole pockets in the Fermi surfaces of single-layer Bi-based cuprate superconductors from angle-resolved photoemission (ARPES). From detailed low-energy electron diffraction measurements and an analysis of the ARPES polarization-dependence, we show that these pockets are not intrinsic, but arise from multiple overlapping superstructure replicas of the main and shadow bands. We further demonstrate that the hole pockets reported recently from ARPES [Meng et al, Nature 462, 335 (2009)] have a similar structural origin, and are inconsistent with an intrinsic hole pocket associated with the electronic structure of a doped CuO2_2 plane. The nature of the Fermi surface topology in the enigmatic pseudogap phase therefore remains an open question.Comment: 5 pages, 4 figure
    • …
    corecore