203 research outputs found

    Linear response of light deformed nuclei investigated by self-consistent quasiparticle random-phase-approximation

    Full text link
    We present a calculation of the properties of vibrational states in deformed, axially--symmetric even--even nuclei, within the framework of a fully self--consistent Quasparticle Random Phase Approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed 24−26{}^{24-26}Mg, 34^{34}Mg isotopes are presented and compared to experimental findings

    Microscopic Structure of Rotational Damping

    Get PDF
    The damping of collective rotational motion is studied microscopically, making use of shell model calculations based on the cranked Nilsson deformed mean-field and on residual two-body interactions, and focusing on the shape of the gamma-gamma correlation spectra and on its systematic behavior. It is shown that the spectral shape is directly related to the damping width of collective rotation, \Gammarot, and to the spreading width of many-particle many-hole configurations, \Gammamu. The rotational damping width is affected by the shell structure, and is very sensitive to the position of the Fermi surface, besides mass number, spin and deformation. This produces a rich variety of features in the rotational damping phenomena

    Oxidative elemental cycling under the low O<sub>2</sub> Eoarchean atmosphere

    Get PDF
    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3–2.9 Gyr ago. 3.8–3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth’s earliest surface chemistry and the low oxygen primordial biosphere. Here we find fractionated Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed banded iron formations (BIFs) from Isua that indicate oxidative Cr cycling 3.8–3.7 Gyr ago. Elevated U/Th ratios in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species were present in the Eoarchean surface environment, under a very low oxygen atmosphere, inducing oxidative elemental cycling during the deposition of the Isua BIFs and possibly supporting early aerobic biology

    Spreading width of compound states through coincidence spectra of rotational gamma-rays

    Get PDF
    Abstract The intrinsic width of (multiparticle-multihole) compound states is an elusive quantity, of difficult direct access, as it is masked by damping mechanisms which control the collective response of nuclei. Through microscopic cranked shell model calculations, it is found that the strength function associated with two-dimensional gamma-coincidence spectra arising from rotational transitions between states lying at energies > 1 MeV above the yrast line, exhibits a two-component structure controlled by the rotational (wide component) and compound (narrow component) damping width. This last component is found to be directly related to the width of the multiparticle-multihole autocorrelation function

    Observation of Thermodynamical Properties in the 162^{162}Dy, 166^{166}Er and 172^{172}Yb Nuclei

    Full text link
    The density of accessible levels in the (3^3He,αγ\alpha \gamma) reaction has been extracted for the 162^{162}Dy, 166^{166}Er and 172^{172}Yb nuclei. The nuclear temperature is measured as a function of excitation energy in the region of 0 -- 6 MeV. The temperature curves reveal structures indicating new degrees of freedom. The heat capacity of the nuclear system is discussed within the framework of a canonical ensemble.Comment: 12 pages, 4 figures include

    Reduced Bloch mode expansion for periodic media band structure calculations

    Full text link
    Reduced Bloch mode expansion is presented for fast periodic media band structure calculations. The expansion employs a natural basis composed of a selected reduced set of Bloch eigenfunctions. The reduced basis is selected within the irreducible Brillouin zone at high symmetry points determined by the medium's crystal structure and group theory (and possibly at additional related points). At each of the reciprocal lattice selection points, a number of Bloch eigenfunctions are selected up to the frequency range of interest for the band structure calculations. Since it is common to initially discretize the periodic unit cell and solution field using some choice of basis, reduced Bloch mode expansion is practically a secondary expansion that uses a selected set of Bloch eigenvectors. Such expansion therefore keeps, and builds on, any favorable attributes a primary expansion approach might exhibit. Being in line with the well known concept of modal analysis, the proposed approach maintains accuracy while reducing the computation time by up to two orders of magnitudes or more depending on the size and extent of the calculations. Results are presented for phononic, photonic and electronic band structures.Comment: 15 pages of text, 8 figures, submitted for journal publication, minor edits and correction of typo
    • …
    corecore