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Abstract

Ž .The intrinsic width of multiparticle-multihole compound states is an elusive quantity, of difficult direct access, as it is
masked by damping mechanisms which control the collective response of nuclei. Through microscopic cranked shell model
calculations, it is found that the strength function associated with two-dimensional gamma-coincidence spectra arising from
rotational transitions between states lying at energies ) 1 MeV above the yrast line, exhibits a two-component structure

Ž . Ž .controlled by the rotational wide component and compound narrow component damping width. This last component is
found to be directly related to the width of the multiparticle-multihole autocorrelation function. q 1999 Published by
Elsevier Science B.V. All rights reserved.
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In deformed nuclei, the observed discrete rota-
tional bands are often successfully described as states

w xof a cranked mean field 1 . For fixed angular mo-
mentum and increasing excitation energy, the resid-
ual interaction not included in the mean field will
eventually generate compound states, which are su-
perpositions of the many-particle many-hole mean

< :field states. As a result, each basis band state m

1 E-mail: matsuo@yukawa.kyoto-u.ac.jp

< :becomes distributed over the compound states a

within an energy interval known as the compound
w xstate damping width G 2–4 .m

The quantity G plays a central role in the studym

of basic nuclear phenomena, like the statistical and
w xchaotic features of energy levels 5–7 , or the damp-

w xing of collective vibrations 8,9 . However, it also
appears to be inaccessible by direct experimental
means, since it is essentially not possible to excite a
pure many-particle many-hole state. We shall
demonstrate that the spectrum of collective E2-
gamma rays emitted by the compound states built
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out of rotational bands carries information about G .m

This is true also for the unresolved gamma rays,
which are far too weak to allow for construction of a
level scheme with present experimental techniques.

Although rotational damping is a phenomenon
which is independent of compound damping, being
controlled by fluctuations in the alignment of the
single-particle states, the occurrence of compound
states in rotational nuclei is usually accompanied by

w xdamping of rotational motion 3,4,10–12 . In what
follows we shall study the interplay between these
two independent phenomena, namely rotational
damping and compound damping, as a function of
spin and excitation energy, making use of a cranked
shell model which has been applied earlier to the
study of rotational damping and of the statistical
properties of spectral fluctuations and level distances
w x13–15 . Use of the cranked shell model makes it
possible to include many-particle many-hole config-
urations, which are necessary for describing the for-
mation of compound states. But the price paid for it
is the approximate treatment of the angular momen-
tum. Correspondingly, part of the mixing of the
cranked basis states observed in the diagonalization
of two-body interactions in this basis may be ficti-
tious. However, because the basic results we have
obtained through the calculations are rather indepen-
dent of the angular momentum, provided it is suffi-
ciently high, IG30 ", and because the cranking
approximation is expected to become more accurate

Žas I increases and eventually becomes a classical
.variable , it is likely that the results presented below

are not affected in any substantial way by the angu-
lar momentum violation associated with the cranking
approximation. In any case, this point deserves fur-
ther study. The calculations have been performed for
the rare-earth nucleus 168 Yb, for which the quasi-
continuum gamma spectrum has been analyzed ex-
perimentally in detail. The shell model Hamiltonian,
consisting of the cranked Nilsson mean-field and the
surface-delta interaction acting as the residual two-
body force, is diagonalized using the lowest 2000
many-particle many-hole configurations based on the
cranked Nilsson single-particle orbits for each value
of average angular momentum I and the parity p .
This provides the lowest 600 energy levels for each
Ip covering an energy range up to about 2.5 MeV

Ž w xabove the yrast line. See Ref. 15 for further de-

.tails . In the calculation, rotational damping sets in at
Žabout 1 MeV above the yrast line in agreement with

.experiments as a consequence of the spreading of
the unperturbed rotational bands having specific and
simple shell model configurations in a rotating de-
formed mean-field. Above the onset energy and up

Ž .to a few MeV, two-particle two-hole 2p2h and
Ž .three-particle three-hole 3p3h configurations are

the dominant configurations forming the compound
states. The compound damping width G of interestm

is the spreading width of these many-particle many-
Ž . Ž < :.hole np-nh configurations which we label by m

< :over the compound states a .
The spreading width G is, by definition, them

:energy interval over which the strength of a given m

state is distributed. The distribution may formally be
w xrepresented by the strength function 2

2<² < : <S E s a m d Ey E yE ,Ž . Ý ž /ž /m a m

a

² < : :where a m is the amplitude of the np-nh m -state
< :contained in the compound level a of energy E ,a

while E refers to the energy relative to the centroid
E of the strength distribution. The centroid energym

² < < :is given by E s m H m as a sum of unperturbedm

energy associated with the np-nh excitation and
diagonal contribution of the residual two-body inter-
action. Calculated examples of the above function

Ž .are shown in Fig. 1 a . It is noted that the strength
spreads over a limited number of energy levels, and
never shows a smooth profile, because of the dis-
creteness of the energy levels. Furthermore, the
strength function varies strongly from state to state.
A smoother behaviour is obtained by taking the

Ž . < :average of S E over all m states lying within anm

energy bin and spin interval, trimming the delta
Žfunctions with a smoothing function in the present

analysis we use a Strutinsky’s Gaussian function
with the Laguerre orthogonal polynomial of 10 keV

.width . The averaged strength function S E thus² :Ž .m

Ž .obtained is shown in Fig. 1 b . It is customary to
define the spreading width by the FWHM of

S E , denoted by G s, with the label s referring² :Ž .m m

to the average strength function.
Another definition of the spreading width is possi-

ble, making use of the autocorrelation function ap-
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Ž . Ž . < :Fig. 1. a Strength function S E of the individual 74-th, 75-th and 76-th m states, lying around Us1.47 MeV above the yrast line, atm
p q Ž . < : Ž p .I s40 . b Strength function S E averaged over the m states going from 51-st to 100-th for each I , and lying in the spin² :Ž .m

Ž . < : Ž .interval Is30y51. c Autocorrelation function C e , averaged over the same m states used in b .² :Ž .m

Ž .plied to the strength function S E of individualm

np-nh states. The autocorrelation function

C e s S Eqe S E dEŽ . Ž . Ž .Hm m m

expresses the probability of pairwise strengths in
Ž .S E being located relative to another at the energym

Ž .distance e. If the strength function S E were ofm

Breit-Wigner shape of width G , the autocorrelation
function would also have a Breit-Wigner shape, dis-
playing twice the width as that of the original strength

Ž .functions. The autocorrelation function C e has am

physical interpretation as the Fourier transform of
Ž . < < < 2² :the ‘‘survival probability’’ P t s m m t ,Ž .m

which measures the probability of remaining in the
: :state m during its time evolution m t sŽ .

yi H t :e m . For the case of the Breit-Wigner strength
Ž .function, P t decays exponentially with a decaym

Ž .constant given by "rG . We average C e overm

:many m states in an energy bin and spin interval

and make the same smoothing as described above for
Ž .the strength function S E . It is remarked that them

Ž .autocorrelation function C e contains a delta-func-m

<² < : < 4tion peak at es0 proportional to Ý a m , whicha

we remove in the following analysis, since this peak
Ž .corresponds to the asymptotic value of P t at them

t™` limit. The resultant autocorrelation function
Ž .C e is shown in Fig. 1 c . The correlational² :Ž .m

spreading width can be defined as half the value of
the FWHM of the autocorrelation function C e .² :Ž .m

In order to distinguish from the previous definition
G s in terms of the averaged strength function, wem

denote this new quantity G corr making use of them

label ‘corr’. The most immediate feature observed in
the calculated autocorrelation function C e as² :Ž .m

compared to the average strength function S E² :Ž .m

is its narrower profile. Correspondingly, the correla-
tional spreading width G corr s41 keV extracted fromm

Ž .the autocorrelation function shown in Fig. 1 c is
about a factor four smaller than G s.m
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In order to understand this difference it is useful
to look at the details of the strength functions associ-

Ž Ž ..ated with ’individual’ np-nh states cf. Fig. 1 a .
The strength distribution of individual states is typi-
cally clustered within a narrower energy interval
than that associated with the average strength func-

Žtion S E cf. e.g. the strength function associ-² :Ž .m

ated with the 74-th and 75-th np-nh states of angular
p q.momentum and parity I s40 . Also, the position

of the dominant strengths deviates from the centroid
Ž .position Es0 and varies between different m

configurations. This variation results in a broad pro-
file of the average strength function S E . In² :Ž .m

contrast, the width of the individual autocorrelation
Ž .functions C e reflects the clustering of strengths.m

Thus, the averaged autocorrelation C e forms a² :Ž .m

peak around es0 whose width is not influenced by
the energy shift of the dominant strength, which only
gives rise to wide tails stretching out to large posi-
tive and negative energies. Since the energy shift
does not imply spreading nor influence the survival
probability, we posit that the correlational width
G corr is more appropriate to characterize the spread-m

ing width than the quantity G s. The difference be-m

tween G corr and G s decreases gradually withm m

increasing excitation energy of the np-nh states.
However, we find from a calculation using an ex-
tended basis of 6000 np-nh states that G corr,G s sm m

133,305 keV for the levels a1800ya2100 at Is
40,41 indicating that around Uf3 MeV there is a
difference of about a factor of 2 between these two
quantities. At this energy, while the strength of

< :individual m states is spread over several hundreds
of levels, the distribution still displays, in most cases,
a strong clusterization around a few big peaks, and
does not show a smooth Breit-Wigner distribution.

Our studies have also shown that the difference
found between G corr and G s is related to the naturem m

of the two-body residual interaction used in the
Ž .calculations cf. Fig. 2 . Replacing the surface delta
Ž .interaction SDI by a volume-type delta force

Ž Ž . Ž .. sV 1,2 sÕ d x yx , the ratio between G andt 1 2 m

G corr is as large as for the SDI. On the other hand,m

using a random two-body interaction for which the
< <² :two-body matrix elements Õ s ijy ji V 1,2 klŽ .i jk l

Ž < <² :or Õ s ij V 1,2 kl for the neutron-proton in-Ž .i jk l
.teraction having no exchange term are replaced with

Gaussian random numbers, it is found that the result-

Fig. 2. Comparison of the two spreading widths G s and G corr
m m

extracted from the strength function S E and from the² :Ž .m

autocorrelation function C e , respectively. The values shown² :Ž .m

< :were obtained averaging over the m states in the spin interval
Is30y51, included in the bins a51ya100,a151ya200, and
a251ya300. We show results obtained for different interactions:

w xthe SDI with the standard strength V s27.5r A MeV 15
Ž . Ž .symbol e and with V s20r A MeV e , the volume-delta

3 w x Ž .force with the strength Õ ,Õ s340,500 fm MeV 15 I ,n nŽ p p. n p

the random two-body interaction with different r.m.s. values
Ž .Õs8,12,15,19 keV q , and the truncated SDI including only

< < Ž .matrix elements satisfying Õ -40,60 keV ( .i jk l

ing G corr approximately coincides with G s, irre-m m

spective of the average strength of the matrix ele-
ments.

Before discussing the physics which is at the basis
of these results, it is reasonable to mention that the
SDI or the delta residual interaction are a better
representation for nuclear structure calculations at
moderate excitation energies above the yrast line, of
the residual interaction acting among nucleons, than
that provided by a random force. It is well known

Ž .that the SDI or the delta interaction and the random
interaction differ dramatically in the statistical distri-
bution of two-body matrix elements Õ . In fact, thei jk l

Ž .distribution P Õ of the off-diagonal matrix ele-i jk l
Ž .ments Õ ij/kl for the SDI, plotted in Fig. 3i jk l

Ž .and for the delta interaction, not shown here , ex-
hibits a strong skewness. In other words, it has a

< <significant excess for large matrix elements Õ )i jk l

60 keV compared with a Gaussian distribution hav-
2² :ing the same r.m.s value Õ s19 keV. The( i jk l

large matrix elements contribute to the r.m.s. value
< <as much as the small ones Õ -60 keV, as seeni jk l

Ž . 2 Ž .in Fig. 3 b , where the quantity Õ P Õ is dis-i jk l i jk l
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Fig. 3. Statistical distribution of the off-diagonal two-body matrix
Ž .elements Õ of the SDI, evaluated at Is40,41. In a , thei jk l

Ž . Ž .distribution P Õ is plotted. In b , the distribution weightedi jk l

with Õ2 is plotted. The dotted line represents a Gaussian distri-i jk l
Ž .bution whose r.m.s is taken the same as the SDI 19 keV .

Žplayed, while they appear quite rarely only 2% of
.the total number of off-diagonal matrix elements .

Ž .The role of the large and rare off-diagonal matrix
elements of the SDI can be clarified through a

Ž . Ž .calculation of S E and C e carried out with am m

truncated SDI, where only the small matrix elements
< <Õ -60 keV are kept. This truncation has a signif-i jk l

icant effect on the calculated average strength func-
tion S E , diminishing G s to less than half of² :Ž .m m

its original value. On the other hand, the average
autocorrelation function C e remains almost un-² :Ž .m

corr Žchanged, keeping the original value of G cf.m

.Fig. 2 . This result, together with the approximate
equality of G s and G corr for the Gaussian distribu-m m

tion of matrix elements, leads us to relate the differ-
ence between the two spreading widths to the large
off-diagonal matrix elements of the SDI. A precise
understanding of this relation is still an open ques-
tion. Non-Gaussian distributions of two-body matrix
elements are known also in other shell model studies

w xof compound states in sd-shell nuclei 6 and atomic
w xsystems 16 . It is interesting to investigate similar

effects in these systems.
Seen from the perspective of gamma decay cas-

Ž . Ž .cades, the strengths S E and C e are zero-stepm m

functions, describing the coupling of np-nh states
locally at one value of the angular momentum I. On
the other hand, the gam m a transitions

XEg: :a I ™ a Iy2 taking place between com-Ž . Ž .
pound energy levels of angular momenta I and Iy2
are described by the one-step E2 strength function
Ž1.Ž .S E while the consecutive gamma transitionsa g

X XXE Eg1 g 2: : :a I ™ a Iy2 ™ a Iy4 are de-Ž . Ž . Ž .
scribed by the two-step strength functions
Ž2.Ž .S E , E . Fig. 4 shows examples of these twoa g 1 g 2

types of strength functions. Individual one-step
Ž1.Ž .strength functions S E display considerable finea g

Ž Ž ..structures Fig. 4 a which vary for different initial
:a states while their average over many states

Ž Ž ..becomes a rather featureless function Fig. 4 b , from
which one can extract only the rotational damping

Ž2.Ž .width G . The two-step function S E , E , onrot a g 1 g 2

the other hand, exhibits a two-component structure
even after averaging over many states as shown in

Ž . Ž . w xFig. 4 c , d and discussed earlier 15,17,18 . Pro-
jected on the E yE axis, the two componentsg1 g 2

are characterized by wide and narrow widths, Gwide
Ž Ž ..and G cf. Fig. 4 d . On the basis of our resultsnarrow

for the autocorrelation function of the zero-step mix-
ing discussed above, we shall show below that the
narrow component in the two-step function can be
given a more precise interpretation as a doorway
phenomenon related to the compound damping width.
Thus, the two-step function carries information on
the compound damping width G as well as on them

rotational damping width G .rot
< :The admixture of np-nh states m into each

< : <² < :2 <compound state a produces strengths a m

which fluctuate strongly, even at high excitation
Ž .energies above the yrast line f 3 MeV , where

their distribution is expected to approach a Porter-
w xThomas shape 14 . E2 transitions from a given state

< :a at angular momentum I will single out states
< X:a at Iy2, which contain strong components of

< : < :the same m states as in a , and this will also take
place in the second transition to Iy4. In this sense,

< Ž .:the dominant components m Iy2 at the midpoint
of the two consecutive decay steps act as ‘‘doorway
states’’ in the two-step cascade. If the spreading
width G of the ‘‘doorway states’’ is considerablym

smaller than the rotational damping width G , therot

E2 strength distribution will exhibit structures which
are associated with the ‘‘doorway states’’ having the
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Ž . Ž1.Ž . qFig. 4. a The calculated one-step strength function S E for a typical compound level, the 71-st 42 states lying at 1.329 MeV abovea g

Ž . Ž1.the yrast line. b The average one-step strength function S E for the levels in the energy bin including the 51-st to 100th lowest² :Ž .a g

Ž p . Ž .levels for each I at spin Is42,43. The associated width is the rotational damping width G . c The average two-step strength functionrot
Ž2. Ž .S E , E calculated for the same levels. d Its projection on the E yE axis. The width G and the intensity I of the² :Ž .a g 1 g 2 g 1 g 2 narrow narrow

narrow component are extracted by fitting the shape of the projection with two Gaussians.

rotational energy correlation, and smeared by G inm

both of the decay steps. Assuming a Gaussian shape
Ž .or a Breit-Wigner for the strength function of the
< : Ž .m states, one finds G s2 G or 2.9G for thenarrow m m

width of the narrow component. On the other hand,
< :the gamma rays that pass through different m

configurations in the consecutive steps loose the
rotational correlation up to the energy scale of G ,rot

contributing to the wide component, whose width
G is thus related to the rotational damping widthwide

as G f2 G . The intensity I of the narrowwide rot narrow

component is also expected to be correlated to the
compound damping width. In fact, one can estimate

< < < 4
y1

it as I s1rn where n s Ý a m¦ ¦ ; ;narrow door door m

< :is an effective number of doorway m states con-
< :tained in a typical compound level a . In terms of

G and the average level spacing D, one finds,m

assuming fluctuations to have a Porter-Thomas shape,
that I s1rn f2 DrG for Gaussian, andnarrow door m

f DrG for Breit-Wigner distributions, respec-m

tively.
As seen in Fig. 5, the expected relation between

the narrow width G of the two-step functionnarrow
Ž2.Ž .S E , E and the spreading width G of thea g 1 g 2 m

np-nh states is verified by the numerical calcula-
tions. The correlational spreading width G corr ex-m

hibits a clear relation to the narrow component width
G for the different interactions discussed be-narrow
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Ž .Fig. 5. The values of the width G large symbols, left axisnarrow
Ž .and of the intensity I small symbols, right axis , associatednarrow

with the narrow component extracted from the two-step strength
Ž Ž ..function cf. Fig. 4 d , are plotted versus the correlational spread-

ing width G corr of the np-nh states. Different residual interac-m

tions are considered, and the averages are taken over the energy
Žbin a51ya100 and over the spin interval Is30y51 cf. Fig.

.2 . In the case of the SDI the results associated with the higher
energy bins are also plotted. In the inset, the relation between
G and G s is shown.narrow m

Žfore. These quantities satisfy the relation G f 2narrow
.y3 G expected from the above consideration. Fig.m

5 indicates that the intensity of the narrow compo-
nent, I extracted from the numerical calcula-narrow

tion, also follows the above theoretical expectation.
The agreement within a factor of two between calcu-
lated and estimated values is regarded as satisfactory,
since such estimates emphasize the basic physics
mechanism, while effects of coherence between dif-

:ferent m states are not included. It is noted that the
spreading width G s extracted from the averagem

strength function S E does not exhibit any cor-² :Ž .m

Ž .relation with G cf. Fig. 5 .narrow

Experimentally, hints of a two-component struc-
w xture in the two-dimensional spectra exist 17 , but

they are not easy to extract from a dominant back-
ground of non-consecutive coincidences. The narrow
component occurs in the same region of energies as

that associated with the so called ‘‘first ridge’’,
which consists of transitions along unmixed rota-
tional bands. Techniques to study this narrow com-
ponent will probably include analysis of fluctuations
w x w x4,11 and spectra of dimension higher than two 12 .
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