149 research outputs found

    Composition and Structural Studies of Strong Glow Discharge Polymer Coatings

    Get PDF
    OAK A271 COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS. An investigation of the chemical composition and structure of strong glow discharge (GDP) polymer shells made for cryogenic experiments at OMEGA is described. The investigation was carried out using combustion and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The strongest coatings were observed to have the lowest hydrogen content or hydrogen/carbon H/C ratio, whereas the weakest coatings had the highest hydrogen content or H/C ratio. Chemical composition results from combustion were used to complement FTIR analysis to determine the relative hydrogen content of as-fabricated coatings. Good agreement was observed between composition results obtained from combustion and FTIR analysis. FTIR analysis of coating structures showed the strongest coatings to have less terminal methyl groups and a more double bond or olefinic structure. Strong GDP coatings that were aged in air react more with oxygen and moisture than standard GDP coatings. In addition to a more olefinic structure, there may also be more free-radial sites present in strong GDP coatings, which leads to greater oxygen uptake

    Recent Progress in Fabrication of High-Strength Glow Discharge Polymer Shells by Optimization of Coating Parameters

    Get PDF
    OAK A271 RECENT PROGRESS IN FABRICATION OF HIGH-STRENGTH GLOW DISCHARGE POLYMER SHELLS BY OPTIMIZATION OF COATING PARAMETERS. In this paper, the authors report the progress they have made in fabrication of high-strength thin-walled glow discharge polymer (GDP) shells for cryogenic experiments at OMEGA. They have investigated a number of different parameters involved in making such shells. Optimization of hydrogen to hydrocarbon precursor flow has been observed to be critical in obtaining strong shells. They can routinely make high-strength shells of OMEGA size (900 {micro}m in diameter) with thicknesses in the range of 1.0 to 1.5 {micro}m. The permeabilities of these shells to various gases have been found to be as much as three times higher than those of lower strength shells. Run to run variability and other batch statistics are discussed

    An orifice shape-based reduced order model of patient-specific mitral valve regurgitation

    Get PDF
    Mitral valve regurgitation (MR) is one of the most prevalent valvular heart diseases. Its quantitative assessment is challenging but crucial for treatment decisions. Using computational fluid dynamics (CFD), we developed a reduced order model (ROM) describing the relationship between MR flow rates, transvalvular pressure differences, and the size and shape of the regurgitant valve orifice. Due to its low computational cost, this ROM could easily be implemented into clinical workflows to support the assessment of MR. We reconstructed mitral valves of 43 patients from 3D transesophageal echocardiographic images and estimated the 3D anatomic regurgitant orifice areas using a shrink-wrap algorithm. The orifice shapes were quantified with three dimensionless shape parameters. Steady-state CFD simulations in the reconstructed mitral valves were performed to analyse the relationship between the regurgitant orifice geometry and the regurgitant hemodynamics. Based on the results, three ROMs with increasing complexity were defined, all of which revealed very good agreement with CFD results with a mean bias below 3% for the MR flow rate. Classifying orifices into two shape groups and assigning group-specific flow coefficients in the ROM reduced the limit of agreement predicting regurgitant volumes from 9.0 ml to 5.7 ml at a mean regurgitant volume of 57 ml

    Modelling the hemodynamics of coronary ischemia

    Get PDF
    Acting upon clinical patient data, acquired in the pathway of percutaneous intervention, we deploy hierarchical, multi-stage, data-handling protocols and interacting low- and high-order mathematical models (chamber elastance, state-space system and CFD models), to establish and then validate a framework to quantify the burden of ischaemia. Our core tool is a compartmental, zero-dimensional model of the coupled circulation with four heart chambers, systemic and pulmonary circulations and an optimally adapted windkessel model of the coronary arteries that reflects the diastolic dominance of coronary flow. We guide the parallel development of protocols and models by appealing to foundational physiological principles of cardiac energetics and a parameterisation (stenotic Bernoulli resistance and micro-vascular resistance) of patients’ coronary flow. We validate our process first with results which substantiate our protocols and, second, we demonstrate good correspondence between model operation and patient data. We conclude that our core model is capable of representing (patho)physiological states and discuss how it can potentially be deployed, on clinical data, to provide a quantitative assessment of the impact, on the individual, of coronary artery disease
    • …
    corecore