18 research outputs found

    Surface properties of illite-smectite minerals as detected by interactions with Rhodamine 6G dye

    No full text
    Interactions between smectite clay minerals and various organic dyes have been studied extensively, but little information has accumulated from dye interactions with mixed-layer illite-smectite (I-S) minerals, especially regarding relationships with clay layer expandability, layer charge, particle size/shape, and molecular aggregation of organic dye molecules. The purpose of this study was to investigate the surface interactions of a set of mixed-layer illite-smectites from different geological environments with Rhodamine 6G dye. The samples used have different amounts of expandable smectite interlayers, different particle size and/or shape, and different layer-charge density at the surface. Five smectites with differences in layer charge and some non-expandable layer silicates were also tested. The interactions detected by UV-vis spectroscopy show no reaction between R6G and non-expandable minerals (kaolinite, mica), and intense reactions forming H-aggregates and monomers with smectites and illite-smectites. The intensity of H-aggregate formation increases with increase in the layer charge of smectites. Mixed-layer illite-smectites interact with R6G more intensely than do smectites. H-aggregate and monomer formation increases with the illitization process for randomly ordered illite-smectites (R = 0) and decreases in the course of illitization for the ordered illite-smectites (R > 0)

    Molecular modeling of surface modification of Wyoming and Cheto montmorillonite by methylene blue

    No full text
    The surface area of various types of montmorillonites (MMT) with different values of layer charge plays a very important role in surface arrangement of methylene blue cations (MB). Photoluminescence measurements can be strongly or partially influenced by this surface arrangement of cations. For these reasons and on the basis of our previous results, molecular simulations were performed for various types of montmorillonites covered with methylene blue cations. Adsorption of methylene blue cations on Na-Wyoming MMT surface is different from Ca-Cheto MMT. In the case of Wyoming with a lower layer charge, MB cations lie parallel to the silicate layer for all investigated samples. On the other hand, Cheto surface is covered with a higher amount of MB cations. The results obtained from molecular modeling indicate that MB lies parallel to low loading case and become tilted with respect to layer for a higher loading. Moreover, a higher amount of MB cations covering the silicate layer are much less energy-stable. A higher loading of MB cations leads to aggregates but at low loading MB cations degrade to monomers
    corecore