42 research outputs found

    ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides

    Get PDF
    The pks genomic island of Escherichia coli encodes polyketide (PK) and nonribosomal peptide (NRP) synthases that allow assembly of a putative hybrid PK-NRP compound named colibactin that induces DNA double-strand breaks in eukaryotic cells. The pks-encoded machinery harbors an atypical essential protein, ClbP. ClbP crystal structure and mutagenesis experiments revealed a serine-active site and original structural features compatible with peptidase activity, which was detected by biochemical assays. Ten ClbP homologs were identified in silico in NRP genomic islands of closely and distantly related bacterial species. All tested ClbP homologs were able to complement a clbP-deficient E. coli mutant. ClbP is therefore a prototype of a new subfamily of extracytoplasmic peptidases probably involved in the maturation of NRP compounds. Such peptidases will be powerful tools for the manipulation of NRP biosynthetic pathways

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    Microbial carcinogenic toxins and dietary anti-cancer protectants

    Get PDF

    Abnormal LAMP1 glycosylation may play a role in Niemann-Pick disease, type C pathology.

    No full text
    A hallmark of Niemann-Pick disease, type C (NPC) is the progressive degeneration of Purkinje neurons in the cerebellum caused by the accumulation of free cholesterol and glycosphingolipids in the lysosome. Recent studies suggest that the state of glycosylation of lysosomal membrane proteins may play a role in disease progression. Our study has identified the presence of a highly glycosylated form of Lysosome Associated Membrane Protein 1 (LAMP1) that correlated spatiotemporally with Purkinje neuron loss. This form of LAMP1 was predominantly localized to activated microglia; showing a ~5-fold increase in surface labeling by FACS analysis. This suggests a potential role for LAMP1 in the neuro-inflammatory process in these mice during disease progression. Analysis of other mouse models of neurodegeneration that exhibit neuro-inflammation showed little or no presence of this glycosylated form of LAMP1, suggesting this observation for LAMP1 is specific to NPC disease. Furthermore, early treatment of Npc1-/- mice with 2-hydroxypropyl-β-cyclodextrin (HPβCD), significantly prevented the appearance of the glycosylated LAMP1 in the cerebellum of Npc1-/- mice at 7 weeks, consistent with the prevention of neuro-inflammation in mice treated with this drug. Treatment of Npc1-/- mice with HPβCD at 7 weeks, after disease onset, did not reverse or prevent further appearance of the hyperglycosylated LAMP1, demonstrating that once this aspect of neuro-inflammation began, it continued despite the HPβCD treatment. Analysis of LAMP1 in cerebellar tissue of NPC1 patients showed a small level of hyperglycosylated LAMP1 in the tissue, however, this was not seen in the CSF of patients

    Differential Proteomics Reveals miR-155 as a Novel Indicator of Liver and Spleen Pathology in the Symptomatic Niemann-Pick Disease, Type C1 Mouse Model

    No full text
    Niemann-Pick disease, type C1 (NPC1) is a rare, autosomal recessive, lipid storage disorder caused by mutations in NPC1. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. Clinically, patients can present with splenomegaly and hepatomegaly. In the current study, we analyzed the differential proteome of the spleen in symptomatic Npc1−/− mice to complement previous studies focused on the differential proteome of the liver, and then evaluated biomolecules that may serve as tissue biomarkers. The proteomic analysis revealed altered pathways in NPC1 representing different functional categories including heme synthesis, cellular regulation and phosphoinositide metabolism in both tissues. Differential proteins included several activators of the ubiquitous and critical protein, Akt, a major kinase involved in multiple cellular processes. Evaluation of Akt revealed decreased expression in both the liver and spleen tissues of symptomatic Npc1−/− mice. Upstream regulation analysis also suggested that miR-155 may modulate the differences of known downstream protein targets observed in our dataset. Upon evaluation of miR-155, we observed an increased expression in the liver and decreased expression in the spleen of symptomatic Npc1−/− mice. Here, we propose that miR-155 may be a novel indicator of spleen and liver pathology in NPC1

    Analysis of Structure-Function Relationships in the Colibactin-Maturating Enzyme ClbP.

    No full text
    pks genomic island of Escherichia coli is involved in the synthesis of the non-ribosomal peptide-type genotoxin colibactin, which has been suggesting as affecting the host immune response and having an impact on cancer development. The pks-encoded enzyme ClbP is an atypical peptidase that contributes to the synthesis of colibactin. In this work, we identified key features of ClbP. Bacterial fractionation and Western-blot analysis revealed the docking of ClbP to the bacterial inner membrane via a C-terminal domain harboring three predicted transmembrane helices. Whereas only one helix was necessary for the location in the inner membrane, the complete sequence of the C-terminal domain was necessary for ClbP bioactivity. In addition, the N-terminal sequence of ClbP allowed the SRP/Sec/YidC- and MreB-dependent translocation of the enzymatic domain in the periplasmic compartment, a feature also essential for ClbP bioactivity. Finally, the comparison of ClbP structure with that of the paralogs FmtA-like and AmpC revealed at an extremity of the catalytic groove a negative electrostatic potential surface characteristic of ClbP. Site-directed mutagenesis experiments identified in this zone two aspartic residues that were important for ClbP bioactivity. Overall, these results suggest a model for precolibactin activation by ClbP and pave a way for the design of inhibitors targeting colibactin production

    FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts

    No full text
    Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 or NPC2 with decreased functions leading to lysosomal accumulation of cholesterol and sphingolipids. FTY720/fingolimod, used for treatment of multiple sclerosis, is phosphorylated by nuclear sphingosine kinase 2 and its active phosphorylated form (FTY720-P) is an inhibitor of class I histone deacetylases. In this study, administration of clinically relevant doses of FTY720 to mice increased expression of NPC1 and -2 in brain and liver and decreased cholesterol in an SphK2-dependent manner. FTY720 greatly increased expression of NPC1 and -2 in human NPC1 mutant fibroblasts that correlated with formation of FTY720-P and significantly reduced the accumulation of cholesterol and glycosphingolipids. In agreement with this finding, FTY720 pretreatment of human NPC1 mutant fibroblasts restored transport of the cholera toxin B subunit, which binds ganglioside GM1, to the Golgi apparatus. Together, these findings suggest that FTY720 administration can ameliorate cholesterol and sphingolipid storage and trafficking defects in NPC1 mutant fibroblasts. Because neurodegeneration is the main clinical feature of NPC disease, and FTY720 accumulates in the CNS and has several advantages over available histone deacetylase inhibitors now in clinical trials, our work provides a potential opportunity for treatment of this incurable disease

    FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts

    No full text
    Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 or NPC2 with decreased functions leading to lysosomal accumulation of cholesterol and sphingolipids. FTY720/fingolimod, used for treatment of multiple sclerosis, is phosphorylated by nuclear sphingosine kinase 2 and its active phosphorylated form (FTY720-P) is an inhibitor of class I histone deacetylases. In this study, administration of clinically relevant doses of FTY720 to mice increased expression of NPC1 and -2 in brain and liver and decreased cholesterol in an SphK2-dependent manner. FTY720 greatly increased expression of NPC1 and -2 in human NPC1 mutant fibroblasts that correlated with formation of FTY720-P and significantly reduced the accumulation of cholesterol and glycosphingolipids. In agreement with this finding, FTY720 pretreatment of human NPC1 mutant fibroblasts restored transport of the cholera toxin B subunit, which binds ganglioside GM1, to the Golgi apparatus. Together, these findings suggest that FTY720 administration can ameliorate cholesterol and sphingolipid storage and trafficking defects in NPC1 mutant fibroblasts. Because neurodegeneration is the main clinical feature of NPC disease, and FTY720 accumulates in the CNS and has several advantages over available histone deacetylase inhibitors now in clinical trials, our work provides a potential opportunity for treatment of this incurable disease
    corecore