691 research outputs found

    Symmetries of the Dirac operators associated with covariantly constant Killing-Yano tensors

    Get PDF
    The continuous and discrete symmetries of the Dirac-type operators produced by particular Killing-Yano tensors are studied in manifolds of arbitrary dimensions. The Killing-Yano tensors considered are covariantly constant and realize certain square roots of the metric tensor. Such a Killing-Yano tensor produces simultaneously a Dirac-type operator and the generator of a one-parameter Lie group connecting this operator with the standard Dirac one. The Dirac operators are related among themselves through continuous or discrete transformations. It is shown that the groups of the continuous symmetry can be only U(1) and SU(2), specific to (hyper-)Kahler spaces, but arising even in cases when the requirements for these special geometries are not fulfilled. The discrete symmetries are also studied obtaining the discrete groups Z_4 and Q. The briefly presented examples are the Euclidean Taub-NUT space and the Minkowski spacetime.Comment: 27 pages, latex, no figures, final version to be published in Class. Quantum Gravit

    Melting behavior of (Th,U)O2 and (Th,Pu)O2 mixed oxides

    Get PDF
    © 2016 Elsevier B.V.The melting behaviors of pure ThO2, UO2 and PuO2 as well as (Th,U)O2 and (Th,Pu)O2 mixed oxides (MOX) have been studied using molecular dynamics (MD) simulations. The MD calculated melting temperatures (MT) of ThO2, UO2 and PuO2 using two-phase simulations, lie between 3650-3675 K, 3050–3075 K and 2800–2825 K, respectively, which match well with experiments. Variation of enthalpy increments and density with temperature, for solid and liquid phases of ThO2, PuO2 as well as the ThO2 rich part of (Th,U)O2 and (Th,Pu)O2 MOX are also reported. The MD calculated MT of (Th,U)O2 and (Th,Pu)O2 MOX show good agreement with the ideal solidus line in the high thoria section of the phase diagram, and evidence for a minima is identified around 5 atom% of ThO2 in the phase diagram of (Th,Pu)O2 MOX

    Cellular immune response to Plasmodium falciparum after pregnancy is related to previous placental infection and parity

    Get PDF
    BACKGROUND: Malaria in pregnancy is characterised by the sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces. Placental parasites express a specific phenotype, which allows them to cytoadhere to chondroitin sulfate A expressed by syncytiotrophoblasts. Malaria infection during pregnancy allows the acquisition of antibodies against placental parasites, these antibodies are thought to be involved in protection during subsequent pregnancies. METHODS: To investigate the development of a cellular response to placental parasites during pregnancy, peripheral blood mononuclear cells were collected from women at the time of their confinement. The study was performed in Cameroon where malaria transmission is perennial. In vitro cell proliferation and cytokine production were measured in response to non-malarial activators (concanavalin A and PPD), a recombinant protein from P. falciparum MSP-1, and erythrocytes infected by two P. falciparum lines, RP5 and W2. Like placental parasites, the RP5 line, but not W2, adheres to chondroitin sulfate A and to syncytiotrophoblasts. RESULTS: The proliferative response to all antigens was lower for cells obtained at delivery than 3 months later. Most interestingly, the cellular response to the RP5 line of P. falciparum was closely related to parity. The prevalence rate and the levels of response gradually increased with the number of previous pregnancies. No such relationship was observed with W2 line, or MSP-1 antigen. CONCLUSIONS: This suggests the occurrence of an immune response more specific for the RP5 line in women having had multiple pregnancies, and who are likely to develop immunity to pregnancy-associated parasites. Both humoral and cellular mechanisms may account for the lower susceptibility of multigravidae to malaria

    Tunable membranes incorporating artificial water channels for high-performance brackish/low-salinity water reverse osmosis desalination

    Get PDF
    Membrane-based technologies have a tremendous role in water purification and desalination. Inspired by biological proteins, artificial water channels (AWCs) have been proposed to overcome the permeability/selectivity trade-off of desalination processes. Promising strategies exploiting the AWC with angstrom-scale selectivity have revealed their impressive performances when embedded in bilayer membranes. Herein, we demonstrate that self-assembled imidazole-quartet (I-quartet) AWCs are macroscopically incorporated within industrially relevant reverse osmosis membranes. In particular, we explore the best combination between I-quartet AWC and m-phenylenediamine (MPD) monomer to achieve a seamless incorporation of AWC in a defect-free polyamide membrane. The performance of the membranes is evaluated by crossflow filtration under real reverse osmosis conditions (15 to 20 bar of applied pressure) by filtration of brackish feed streams. The optimized bioinspired membranes achieve an unprecedented improvement, resulting in more than twice (up to 6.9 L center dot m-2 center dot h-1 center dot bar-1) water permeance of analogous commercial membranes, while maintaining excellent NaCl rejection (>99.5%). They show also excellent performance in the purification of low-salinity water under low-pressure conditions (6 bar of applied pressure) with fluxes up to 35 L center dot m-2 center dot h-1 and 97.5 to 99.3% observed rejection

    QuantiDOPA: A Quantification Software for Dopaminergic Neurotransmission SPECT

    Get PDF
    Quantification of neurotransmission Single-Photon Emission Computed Tomography (SPECT) studies of the dopaminergic system can be used to track, stage and facilitate early diagnosis of the disease. The aim of this study was to implement QuantiDOPA, a semi-automatic quantification software of application in clinical routine to reconstruct and quantify neurotransmission SPECT studies using radioligands which bind the dopamine transporter (DAT). To this end, a workflow oriented framework for the biomedical imaging (GIMIAS) was employed. QuantiDOPA allows the user to perform a semiautomatic quantification of striatal uptake by following three stages: reconstruction, normalization and quantification. QuantiDOPA is a useful tool for semi-automatic quantification inDAT SPECT imaging and it has revealed simple and flexibl

    Wireless energy harvesting for autonomous reconfigurable intelligent surfaces

    Get PDF
    In the current contribution, we examine the feasibility of fully-energy-autonomous operation of reconfigurable intelligent surfaces (RIS) through wireless energy harvesting (EH) from incident information signals. Towards this, we first identify the main RIS energy-consuming components and present a suitable and accurate energy-consumption model that is based on the recently proposed integrated controller architecture and includes the energy consumption needed for channel estimation. Building on this model, we introduce a novel RIS architecture that enables EH through RIS unit-cell (UC) splitting. Subsequently, we introduce an EH policy, where a subset of the UCs is used for beamsteering, while the remaining UCs absorb energy. In particular, we formulate a subset allocation optimization problem that aims at maximizing the signal-to-noise ratio (SNR) at the receiver without violating the RIS’s energy consumption demands. As a problem solution, we present low-complexity heuristic algorithms. The presented numerical results reveal the feasibility of the proposed architecture and the efficiency of the presented algorithms with respect to both the optimal and very high-complexity brute-force approach and the one corresponding to random subset selection. Furthermore, the results reveal how important the placement of the RIS as close to the transmitter as possible is, for increasing the harvesting effectiveness.This work was supported by the Luxembourg National Research Fund (FNR) under the CORE project RISOTTI (ref. 14773976), the European Commission’s Horizon 2020 research and innovation programme (ARIADNE) under grant agreement No. 871464, and the Digital Futures center.Peer ReviewedPostprint (published version
    • …
    corecore