2,473 research outputs found

    On the robustness of the Hβ\beta Lick index as a cosmic clock in passive early-type galaxies

    Get PDF
    We examine the Hβ\beta Lick index in a sample of ∼24000\sim 24000 massive (log(M/M⊙)>10.75\rm log(M/M_{\odot})>10.75) and passive early-type galaxies extracted from SDSS at z<0.3, in order to assess the reliability of this index to constrain the epoch of formation and age evolution of these systems. We further investigate the possibility of exploiting this index as "cosmic chronometer", i.e. to derive the Hubble parameter from its differential evolution with redshift, hence constraining cosmological models independently of other probes. We find that the Hβ\beta strength increases with redshift as expected in passive evolution models, and shows at each redshift weaker values in more massive galaxies. However, a detailed comparison of the observed index with the predictions of stellar population synthesis models highlights a significant tension, with the observed index being systematically lower than expected. By analyzing the stacked spectra, we find a weak [NII]λ6584\lambda6584 emission line (not detectable in the single spectra) which anti-correlates with the mass, that can be interpreted as a hint of the presence of ionized gas. We estimated the correction of the Hβ\beta index by the residual emission component exploiting different approaches, but find it very uncertain and model-dependent. We conclude that, while the qualitative trends of the observed Hβ\beta-z relations are consistent with the expected passive and downsizing scenario, the possible presence of ionized gas even in the most massive and passive galaxies prevents to use this index for a quantitative estimate of the age evolution and for cosmological applications.Comment: 20 pages, 11 figures, 1 table. Accepted for publication in MNRAS Main Journa

    Bulges and disks in the local Universe. Linking the galaxy structure to star formation activity

    Full text link
    We use a sample built on the SDSS DR7 catalogue and the bulge-disc decomposition of Simard et al. (2011) to study how the bulge and disc components contribute to the parent galaxy's star formation activity, by determining its position in the star formation rate (SFR) - stellar mass (M⋆_{\star}) plane at 0.02<z<<z<0.1. We use the bulge and disc colours as proxy for their SFRs. We study the mean galaxy bulge-total mass ratio (B/T) as a function of the residual from the MS (ΔMS\Delta_{MS}) and find that the B/T-ΔMS\Delta_{MS} relation exhibits a parabola-like shape with the peak of the MS corresponding to the lowest B/Ts at any stellar mass. The lower and upper envelop of the MS are populated by galaxies with similar B/T, velocity dispersion and concentration (R90/R50R_{90}/R_{50}) values. Bulges above the MS are characterised by blue colours or, when red, by a high level of dust obscuration, thus indicating that in both cases they are actively star forming. When on the MS or below it, bulges are mostly red and dead. At stellar masses above 1010.510^{10.5} M⊙_{\odot}, bulges on the MS or in the green valley tend to be significantly redder than their counterparts in the quiescence region, despite similar levels of dust obscuration. The disc color anti-correlates at any mass with the distance from the MS, getting redder when approaching the MS lower envelope and the quiescence region. We conclude that the position of a galaxy in the LogSFR-LogM⋆_{\star} plane depends on the star formation activity of its components: above the MS both bulge and disk are actively star forming. The nuclear activity is the first to be suppressed, moving the galaxies on the MS. Once the disk stops forming stars as well, the galaxy moves below the MS and eventually to the quiescence region. This is confirmed by a large fraction (∼45%\sim45\%) of passive galaxies with a secure two component morphology.Comment: Version modified after referee comment

    Two-Face(s): ionized and neutral gas winds in the local Universe

    Get PDF
    We present a comprehensive study of the Na I λ\lambda5890, 5895 (Na I D) resonant lines in the Sloan Digital Sky Survey (SDSS, DR7) spectroscopic sample to look for neutral gas outflows in the local galaxies. Individual galaxy spectra are stacked in bins of M⋆{\star} and SFR to investigate the dependence of galactic wind occurrence and velocity as a function of the galaxy position in the SFR-M⋆M{\star} plane. In massive galaxies at the high SFR tail we find evidence of a significant blue-shifted Na I D absorption, which we interpret as evidence of neutral outflowing gas. The occurrence of the blue-shifted absorption is observed at the same significance for purely SF galaxies, AGN and composite systems at fixed SFR. In all classes of objects the blue-shift is the largest and the Na I D equivalent width the smallest for face-on galaxies while the absorption feature is at the systemic velocity for edge-on systems. This indicates that the neutral outflow is mostly perpendicular or biconical with respect to the galactic disk. We also compare the kinematics of the neutral gas with the ionized gas phase as traced by the [OIII]λ\lambda5007, Hα\alpha, [NII]λ6548\lambda6548 and [NII]λ6584\lambda6584 emission lines. Differently for the neutral gas phase, all the emission lines show evidence of perturbed kinematics only in galaxies with a significant level of nuclear activity and, they are independent from the disk inclination. In conclusion, we find that, in the local Universe, galactic winds show two faces which are related to two different ejection mechanisms, namely the neutral outflowing gas phase related to the SF activity along the galaxy disk and the ionized phase related to the AGN feedback. In both the neutral and ionized gas phases, the observed wind velocities suggest that the outflowing gas remains bound to the galaxy with no definitive effect on the gas reservoir.Comment: Accepted to A&A, 13 pages, 9 figure

    Identifying the lights position in photometric stereo under unknown lighting

    Full text link
    Reconstructing the 3D shape of an object from a set of images is a classical problem in Computer Vision. Photometric stereo is one of the possible approaches. It stands on the assumption that the object is observed from a fixed point of view under different lighting conditions. The traditional approach requires that the position of the light sources is accurately known. It has been proved that the lights position can be estimated directly from the data, when at least 6 images of the observed object are available. In this paper, we give a Matlab implementation of the algorithm for solving the photometric stereo problem under unknown lighting, and propose a simple shooting technique to solve the bas-relief ambiguity.Comment: new versio

    Y2O3:Eu and the Mössbauer isomer shift coefficient of Eu compounds from ab-initio simulations

    Get PDF
    We report on a full potential density functional theory characterization of Y2O3 upon Eu doping on the two inequivalent crystallographic sites 24d and 8b. We analyze local structural relaxation, electronic properties and the relative stability of the two sites. The simulations are used to extract the contact charge density at the Eu nucleus. Then we construct the experimental isomer shift (IS) versus contact charge density calibration curve, by considering an ample set of Eu compounds: EuF3, EuO, EuF2, EuS, EuSe, EuTe, EuPd3 and the Eu metal. The, expected, linear dependence has a slope of α = 0.054 mm s-1 Å-3, which corresponds to nuclear expansion parameter ΔR/R = 6.0 × 10-5. α allows to obtain an unbiased and accurate estimation of the IS for any Eu compound. We test this approach on two mixed-valence compounds Eu3S4 and Eu2SiN3, and use it to predict the Y2O3:Eu IS with the result +1.04 mm s-1 at the 24d site and +1.00 mm s-1 at the 8b site

    Y<sub>2</sub>O<sub>3</sub>:Eu and the Mössbauer isomer shift coefficient of Eu compounds from ab-initio simulations

    Get PDF
    We report on a full potential density functional theory characterization of Y2O3 upon Eu doping on the two inequivalent crystallographic sites 24d and 8b. We analyze local structural relaxation, electronic properties and the relative stability of the two sites. The simulations are used to extract the contact charge density at the Eu nucleus. Then we construct the experimental isomer shift (IS) versus contact charge density calibration curve, by considering an ample set of Eu compounds: EuF3, EuO, EuF2, EuS, EuSe, EuTe, EuPd3 and the Eu metal. The, expected, linear dependence has a slope of α = 0.054 mm s−1 Å−3, which corresponds to nuclear expansion parameter ΔR/R = 6.0 × 10−5. α allows to obtain an unbiased and accurate estimation of the IS for any Eu compound. We test this approach on two mixed-valence compounds Eu3S4 and Eu2SiN3, and use it to predict the Y2O3:Eu IS with the result +1.04 mm s−1 at the 24d site and +1.00 mm s−1 at the 8b site

    Microalgae Growth in Physically Pre-Treated Wastewater Generated During Hydraulic Fracturing

    Get PDF
    Hydraulic fracturing technique frequently used during gas and oil production generates large amounts of wastewaters (WWs). High cost of the conventional techniques used to treat such waters adversely affect their economic feasibility. Hence, novel technologies that will facilitate remediation and subsequent re-use of these WWs are welcomed. In this study, growth profile of four Oklahoma native microalgae (Geitlerinema carotinosum, Komvophoron sp., Pseudanabaena sp., Picochlorum oklahomensis) cultivated in physically pre-treated flowback and produced water generated during hydraulic fracturing were characterized. A mechanical step based on oil removal by an oil skimmer was introduced during pre-treatment. The experimental results demonstrated that all four strains could grow in pre-treated flowback and produced water. Biomass productivity varied significantly with the microalgae strain and type of the WW used in the growth experiments. The best performing strain, cyanobacterium Komvophoron sp., was able to grow with a specific growth rate ranging from 0.03 to 0.18 day-1 depending on the type of WW. The process was capable of removing ammonium and phosphorus with efficiencies up to 99 and 63%, respectively

    Chained graphs and some applications

    Get PDF
    This paper introduces the notions of chained and semi-chained graphs. The chain of a graph, when existent, refines the notion of bipartivity and conveys important structural information. Also the notion of a center vertex vc is introduced. It is a vertex, whose sum of p powers of distances to all other vertices in the graph is minimal, where the distance between a pair of vertices { vc, v} is measured by the minimal number of edges that have to be traversed to go from vc to v. This concept extends the definition of closeness centrality. Applications in which the center node is important include information transmission and city planning. Algorithms for the identification of approximate central nodes are provided and computed examples are presented

    Soft x-rays absorption and high-resolution powder x-ray diffraction study of superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy system

    Full text link
    We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa(1-x)Ba(1.75-x)La(0.25+x)Cu3Oy (0<x<0.4, 6.4<y<7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.Comment: 14 pages, 11 figures, accepted for publication in Journal of Physics and Chemistry of Solid
    • …
    corecore