206 research outputs found

    The SIMCA algorithm for processing Ground Penetrating Radar data and its use in landmine detection

    Get PDF
    The main challenge of ground penetrating radar (GPR) based land mine detection is to have an accurate image analysis method that is capable of reducing false alarms. However an accurate image relies on having sufficient spatial resolution in the received signal. But because the diameter of an AP mine can be as low as 2cm and many soils have very high attenuations at frequencies above 3GHz, the accurate detection of landmines is accomplished using advanced algorithms. Using image reconstruction and by carrying out the system level analysis of the issues involved with recognition of landmines allows the landmine detection problem to be solved. The SIMCA (’SIMulated Correlation Algorithm’) is a novel and accurate landmine detection tool that carries out correlation between a simulated GPR trace and a clutter1 removed original GPR trace. This correlation is performed using the MATLAB R processing environment. The authors tried using convolution and correlation. But in this paper the correlated results are presented because they produced better results. Validation of the results from the algorithm was done by an expert GPR user and 4 other general users who predict the location of landmines. These predicted results are compared with the ground truth data

    Probabilistic political economy and endogenous money

    Get PDF
    Since the foundational work of Farjoun and Machover , important contributions to the ïŹeld of probabilistic economy have been made. In this context one naturally has conservation of money as a postulate. However it is questionable whether a capitalist economy could ever work with entirely exogenous money, and it is interesting to see to what extent probabilistic arguments can illuminate the evolution of the type of endogenous money system that characterizes contemporary capitalism. We ïŹrst argue, on probabilistic grounds, that a system with a strict conservation law on money was historically unsustainable. We then make the case that phenomena such as the formation of a rate of interest, periodic commercial crises, and the formation of a rentier class can be understood using the sort of reasoning pioneered by Farjoun and Machove

    The SCC and the SICSA multi-core challenge

    Get PDF
    Two phases of the SICSA Multi-core Challenge have gone past. The first challenge was to produce concordances of books for sequences of words up to length N; and the second to simulate the motion of N celestial bodies under gravity. We took both challenges on the SCC, using C and the Linux Shell. This paper is an account of the experiences gained. It also gives a shorter account of the performance of other systems on the same set of problems, as they provide benchmarks against which the SCC performance can be compared with

    Towards a new socialism

    Get PDF

    A 2D processing algorithm for detecting landmines using Ground Penetrating Radar data

    Get PDF
    Ground Penetrating Radar(GPR) is one of a number of technologies that have been used to improve landmine detection efficiency. The clutter environment within the first few cm of the soil where landmines are buried, exhibits strong reflections with highly non-stationary statistics. An antipersonnel mine(AP) can have a diameter as low as 2cm whereas many soils have very high attenuation frequencies above 3GHZ. The landmine detection problem can be solved by carrying out system level analysis of the issues involved to synthesise an image which people can readily understand. The SIMCA (’SIMulated Correlation Algorithm’) is a technique that carries out correlation between the actual GPR trace that is recorded at the field and the ideal trace which is obtained by carrying out GPR simulation. The SIMCA algorithm firstly calculates by forward modelling a synthetic point spread function of the GPR by using the design parameters of the radar and soil properties to carry out radar simulation. This allows the derivation of the correlation kernel. The SIMCA algorithm then filters these unwanted components or clutter from the signal to enhance landmine detection. The clutter removed GPR B scan is then correlated with the kernel using the Pearson correlation coefficient. This results in a image which emphasises the target features and allows the detection of the target by looking at the brightest spots. Raising of the image to an odd power >2 enhances the target/background separation. To validate the algorithm, the length of the target in some cases and the diameter of the target in other cases, along with the burial depth obtained by the SIMCA system are compared with the actual values used during the experiments for the burial depth and those of the dimensions of the actual target. Because, due to the security intelligence involved with landmine detection and most authors work in collaboration with the national government military programs, a database of landmine signatures is not existant and the authors are also not able to publish fully their algorithms. As a result, in this study we have compared some of the cleaned images from other studies with the images obtained by our method, and I am sure the reader would agree that our algorithm produces a much clearer interpretable image

    Mainstream parallel array programming on cell

    Get PDF
    We present the E] compiler and runtime library for the ‘F’ subset of the Fortran 95 programming language. ‘F’ provides first-class support for arrays, allowing E] to implicitly evaluate array expressions in parallel using the SPU coprocessors of the Cell Broadband Engine. We present performance results from four benchmarks that all demonstrate absolute speedups over equivalent ‘C’ or Fortran versions running on the PPU host processor. A significant benefit of this straightforward approach is that a serial implementation of any code is always available, providing code longevity, and a familiar development paradigm

    Is economic planning hypercomputational? The argument from Cantor diagonalisation

    Get PDF
    Murphy [26] argues that the diagonal argument of the number theorist Cantor can be used to elucidate issues that arose in the socialist calculation debate of the 1930s. In particular he contends that the diagonal argument buttresses the claims of the Austrian economists regarding the impossibility of rational planning.We challenge Murphy’s argument, both at the number theoretic level and from the standpoint of economic realism

    The SIMCA algorithm for processing Ground Penetrating Radar data and its use in locating foundations in demolished buildings

    Get PDF
    Abstract—The main challenge of ground penetrating radar GPR) based foundation detection is to have an accurate image analysis method. In order to solve the detection problem a system level analysis of the issues involved with the recognition of foundations using image reconstruction is required. The SIMCA (’SIMulated Correlation Algorithm’) is a technique based on an area correlation between the trace that would be returned by an ideal point reflector in the soil conditions at the site and the actual trace. During an initialization phase, SIMCA carries out radar simulation using the design parameters of the radar and soil properties. Then SIMCA takes the raw data as the radar is scanned over the ground and in real-time uses a clutter removal technique to remove various clutter such as cross talk, initial ground reflection and antenna ringing. The trace which would be returned by a target under these conditions is then used to form a correlation kernel. The GPR b-scan is then correlated with the kernel using the Pearson correlation coefficient, resulting in a correlated image which is brightest at points most similar to the canonical target. This image is then raised to an odd power >2 to enhance the target/background separation. To validate and compare the algorithm, photographs of the building before it was demolished along with processed data using the REFLEXW package were used. The results produced by the SIMCA algorithm were very promising and were able to locate some features that the REFLEXW package were not able to identify

    Compressed sensing electron tomography using adaptive dictionaries: a simulation study

    Get PDF
    Electron tomography (ET) is an increasingly important technique for examining the three-dimensional morphologies of nanostructures. ET involves the acquisition of a set of 2D projection images to be reconstructed into a volumetric image by solving an inverse problem. However, due to limitations in the acquisition process this inverse problem is considered ill-posed (i.e., no unique solution exists). Furthermore reconstruction usually suffers from missing wedge artifacts (e.g., star, fan, blurring, and elongation artifacts). Compressed sensing (CS) has recently been applied to ET and showed promising results for reducing missing wedge artifacts caused by limited angle sampling. CS uses a nonlinear reconstruction algorithm that employs image sparsity as a priori knowledge to improve the accuracy of density reconstruction from a relatively small number of projections compared to other reconstruction techniques. However, The performance of CS recovery depends heavily on the degree of sparsity of the reconstructed image in the selected transform domain. Prespecified transformations such as spatial gradients provide sparse image representation, while synthesising the sparsifying transform based on the properties of the particular specimen may give even sparser results and can extend the application of CS to specimens that can not be sparsely represented with other transforms such as Total variation (TV). In this work, we show that CS reconstruction in ET can be significantly improved by tailoring the sparsity representation using a sparse dictionary learning principle

    Probabilistic political economy and endogenous money

    Get PDF
    Since the foundational work of Farjoun and Machover , important contributions to the ïŹeld of probabilistic economy have been made. In this context one naturally has conservation of money as a postulate. However it is questionable whether a capitalist economy could ever work with entirely exogenous money, and it is interesting to see to what extent probabilistic arguments can illuminate the evolution of the type of endogenous money system that characterizes contemporary capitalism. We ïŹrst argue, on probabilistic grounds, that a system with a strict conservation law on money was historically unsustainable. We then make the case that phenomena such as the formation of a rate of interest, periodic commercial crises, and the formation of a rentier class can be understood using the sort of reasoning pioneered by Farjoun and Machove
    • 

    corecore