A University
& of Glasgow

Cockshott, W.P., and Koliousis, A. (2011) The SCC and the SICSA multi-
core challenge. In: 4th MARC Symposium, 8-9 Dec 2011, Potsdam.

http://eprints.gla.ac.uk/58983/

Deposited on: 12th January 2012

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/12625.html
http://eprints.gla.ac.uk/view/author/2176.html

The SCC and the SICSA Multi-core Challenge

Paul Cockshott and Alexandros Koliousis

Abstract—Two phases of the SICSA Multi-core Challenge have
gone past. The first challenge was to produce concordances of
books for sequences of words up to length N; and the second
to simulate the motion of N celestial bodies under gravity. We
took both challenges on the SCC, using C and the Linux Shell.
This paper is an account of the experiences gained. It also gives
a shorter account of the performance of other systems on the
same set of problems, as they provide benchmarks against which
the SCC performance can be compared with.

I. INTRODUCTION

HE SICSA Multi-Core Challenge' is an open competition

called by the Scottish Informatics and Computer Science
Alliance (SICSA) to develop multi-core implementations of
a set of predefined problems. Its aim is to learn about the
strengths and weaknesses of current systems for parallel
programming by comparing them on common grounds.

So far, two phases (viz. Phase I and II) of the Challenge
have been run, having attracted entries from teams accross
Europe. Each phase was announced with a problem speci-
fication, together with a candidate serial implementation for
that problem. Participants then had to select a programming
language, a host architecture, and a paralellisation system with
the aim of achieving either the fastest implementation, or the
best acceleration, relative to the performance of the serial
implementation on that architecture. The results from Phase
I were reported at a workshop at the Heriot-Watt University,
on the 13th of December, 2010; results from Phase II were
reported at a workshop at the University of Glasgow, on the
27th of May, 2011.

We have implemented both of the challenges posed by
SICSA on the SCC. Our programming language of choice
was C, and the parallelization system was the Linux Shell — in
particular, Lino, a process-algebra for chips like the SCC that
translates into Linux Shell commands. This paper describes the
problems, the SCC implementations, and then contrast these
with other reported implementations, both in terms of design
and in terms of performance.

II. PHASE I

The first phase of the SICSA Multi-core Challenge was
to create concordances of books. The inputs to the problem
were a file containing English text in ASCII encoding; and
an integer N. The challenge was to find the number of
occurrences of all sequences of words up to length IV, together
with a list of start indices. Optionally, sequences with only one
occurrence could be omitted.

In addition to the problem specification, a reference imple-
mentation in Haskell was provided, together with several ref-
erence texts. In practice, most work was done with the longest

' www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge

TABLE I
SERIAL BENCHMARKS FOR PHASE I ON A TWIN-CORE 2.6GHZ INTEL

PLATFORM
Language OS Print File Size (bytes) Time (sec)
Haskell Windows yes 4792092 > 2h
Haskell Windows yes 3580 0.824
C Windows no 3580 0.028
C Windows yes 3580 0.029
C Windows yes 4792091 3.673
C Windows no 4792091 0.961
C Linux yes 4792091 2.680
C (-03) Linux yes 4792091 2.250
C Linux no 4792091 1.040
C (-03) Linux no 4792091 0.899

of texts, the World English Bible, which is approximately
4.79MB in size; and Elizabeth Gaskell’s The Manchester
Marriage, a short story that is 3.58KB in size.

A. An Improved Serial Implementation

Prior to doing any parallelisation, it is advisable to initially
set up a good sequential version. Intuitively, the concordance
problem is of either linear or, at worst, log-linear complexity,
and for such problems — especially ones involving text files
— the time taken to read the file and print out the results
can easily dominate the execution time. If a problem is I/O-
bound, then there is little advantage in expending effort to
run it on multiple cores. However this hypothesis needed
to be verified by experiment. In order to optain an efficient
and non-esoteric sequential implementation, C was chosen as
the implementation language. The algorithm performed the
following steps:?

1) read the entire text file into a buffer;

2) produce a tokenised version of the buffer;

3) build a hash table of phrases of up to N tokens and a

prefix tree;

4) if the concordance is to be printed out, perform a
traversal of the trees printing out the word sequences
in the format specified;

5) if the results are to be sorted, pipe them through Linux
sort command.

Table I shows that the performance of the C implementation
was very much faster than that obtained using the Haskell
reference code. Our results also seemed to indicate that there
was little practical benefit from parallelising the application
since the greatest part of its time was spent formatting and
printing the output.

B. The Parallel Implementation

The concordance problem is hard to parallelise efficiently.
For example, one can not just split a book into two halves,

2 Available at www.dcs.gla.ac.uk/Wpc/reports/SICS A/concordance.c

TABLE II
PARALLEL BENCHMARKS FOR PHASE I ON A TWIN-CORE 2.6GHZ INTEL

PLATFORM
Program oS Time (sec)
concordance2.c ~ Windows 5.630
concordance2.c Linux 2.257
conc.sh Linux 2.120

prepare a concordance for each half, and then merge the
results together; a repeated word might be missed if it was
mentioned once in the first half and once in the second half.
Thus, a more complicated approach was needed. The problem
was parallelised by getting several threads to read the entire
book, since reading turns out to be relatively fast. The words
themselves are then divided into disjoint sets — one obvious
split would be into 26 sets on the first letter. Then, each thread
could create the concordance for a disjoint subset of the words.
A large part of the time is also taken up with output — the
printed concordance can be 5 times as large as the input file.
If distinct cores are producing this, there is an inevitable serial
phase in which the outputs of the different cores are merged
into a single serial file.

As a first parallel experiment, a dual core version of
the C programme was produced using the Pthreads library
(viz. concordance2.c). The programme was tested on the
same dual-processor machine as the original serial version
of the algorithm. Table II shows the results for creating a
concordance of the Bible (WEB.txt).

There was no gain using multi-threading on Windows. It
looks as if the Pthreads library under Windows simply multi-
threads operations on a single core rather than using both
cores. On Linux, on the other hand, there was a small gain
in performance due to multi-threading — about 17% faster in
elapsed time using 2 cores. Since a large part of the program
execution is spent printing the results, this proved a challenge
to improve using multiple cores.

The first parallel version adopted the strategy of allowing
each thread to write its part of the results to a different file,
which were later merged and sorted. A second parallel verion
followed the same basic strategy as the previous one, but used
the Linux shell, instead of Pthreads, to fork parallel processes.
This latter parallel version (viz. conc.sh) communicates via
files using the following set of commands:

./llconcordance WEB.txt 4 P 1 0 >WEBO.con &
./llconcordance WEB.txt 4 P 1 1 >WEBl.con
wait

cat WEBl.con >>WEBO.con

In this 11concordance is the concordance programme
and parameters 4 P 1 0 are: N the maximum number of
words in a phrase, P indicates that printing is enabled, 1 is
the mask to be applied to the hashcode of phrases and 0 the
value that must result from this masked hash if the phrase is
to be handled by this task. As shown in Table II, this version
had the best performance of the lot.

TABLE III
SCC PERFORMANCE ON THE CONCORDANCE PROBLEM

Implementation Time (sec)
1 core; full concordance 26.17
1 core; 1/2 concordance 13.48
1 core; ! /s concordance 5.59
2 cores; 1 /2 concordance each 49
8 cores; 1 /s concordance each 36
32 cores; ! /32 concordance each 34
1 core on host processor; full concordance 1.03
2 cores on host processor and the Shell; full concordance 0.685

C. SCC Experiments

The SCC is configured with a host processor, a conventional
modern Intel x86 chip. Attached to it is the experimental 48-
core SCC chip, each of whose cores runs a discrete copy of
Linux. A major worry here was the problem of file I/O for
the multiple cores. The source file and the output files were
placed (accessed) on (from) a shared NFS system.

Table II-C shows the results from the SCC experiments.
Looking at the time it took one SCC core to complete the
full concordance task, one can see that it is much slower than
a single core on the host doing the same task. It is unclear
how much of this slowdown is due to the slow access to files
from the daughter copies of Linux and how much is due to
the poorer performance of the individual cores on the SCC.
The top 3 lines of the table show the effects of trying to do
smaller portions of the workload on an individual core.

We dispatched 32 tasks on the SCC cores using the pssh
command as shown in the following commands:

rm /shared/stdout/«

pssh -t 800 —-h hosts32 -o /shared/stdout \
/shared/sccConcordance32

cat /shared/stdout/* |sort > WEB.con

The first line simply removes any temporary output
from a previous run. We then use pssh to run the script
sccConcordance3?2 in a shared directory, sending the out-
put to the /shared/stdout directory. When all tasks have
finished, outputs are concattenated and sorted to yield the final
concordance file. The script sccConcordance32 invokes the
actual concordance task:

cd /shared
./llconcordance WEB.txt 4 P 31 $ (hostname)

The hostname command (returning rck00, or rck01, and
so on) is used to derive a process ID, which is then used to
select which words will be handled by each task. The 4"
parameter to 11concord is the mask that is applied to give
the number of significant bits in the process ID, 5 in this case.
It becomes clear from the results that on an I/O-bound task
like this, the SCC has poor performance.

D. Other implementations

Phase I concluded with a workshop at the Heriot-Watt
University, were a number of other implementations were
presented. Singer reported on the use of Java Fork/Join
primitives to implement a parallel version of the concor-
dance problem [?]; Stewart reported on the use of Hadoop

TABLE IV
BEST TIMES REPORTED FOR PHASE I

Implementation Tasks N Time (sec)
Java Fork/Join 1 4 134.5
Hadoop Map/Reduce 57 (Beowulf cluster) 10 36
Haskell 8 4 27
Groovy 12 4 61
Python 16 3 2
C on SCC at 0.533 Ghz 32 4 34
C on MARC Host 2 4 0.6

Map/Reduce [?]; Al Jabri reported on the use of parallel
Haskell [?] and OpenMP [?]; Loidl reported on a parallel C#
implementation [?]; Kerridge reported on the use of the new
language Groovy in conjunction with JCSP [?]; and Sampson
on the use of Python [?]. Apart from the results reported for the
SCC, the other systems were run on multi-core Xeons, clocked
at about 2.4GHz. The results are summarized in Table IV.

One problem with the analysis of these results is that, whilst
a word sequence of length N = 4 is probably long enough to
pick out unique phrases in the Bible, some participants used
much longer word lengths, which must have made their output
more verbose; some also used different input files, which again
makes the results hard to interpret; and other participants
gave only relative timings of their parallel and sequential
implementations rather than absolute times. The summary of
the results in Table IV shows only those implementations that
are using the same text file (the Bible, i.e. WEB.txt). It was
not always clear whether the reported results included the time
to print the final concordance.

Nonetheless, the final conclusion with respect to the SCC is
clear. Its performance falls roughly in the middle of the range,
with its speed being of the same order as the Hadoop and
Haskell implementations. The most sucessfull, highly-parallel
version was certainly the Python one, but by a small margin
the C version on the MARC host beat its time using only
2 processes. Since the SCC experiments were using exactly
the same C code as the version run on the host processor, it
should have been fast. The fact that even with 32 cores it took
approximately 50 times longer is disappointing.

III. PHASE II

The second phase of the challenge was an N-body gravita-
tional problem — a problem of predicting the motions of a large
group of N bodies under gravity. This is inherently a problem
of order N2 on a sequential machine, since each body interacts
with every other under gravity. As such, it makes a better
candidate for parallelisation than the concordance problem.3
There are many exemplar benchmark programmes that deal
with the N-body problem. SICSA took a C programme from
the Computer Languages Benchmarks Game* as a reference
implementation and modified it slightly so that it handled
1024 bodies rather than 5. The starting positions, masses, and
velocity vectors of bodies in three dimensions were provided
as a text file. There were thus seven floating point numbers
describing each body.

3Recall that the latter was of order N and tended to be /O bound.
4Cf. http://shootout.alioth.debian.org/

North

v |t

cmd

v |

South

West East

Fig. 1. A Lino tile.

If we consider the general complexity of this problem
under parallelism, one component of the execution time should
shrink as the number of processors increases. During each
round of the simulation, the program has to accumulate the
gravitational forces imposed on each body by all other bodies.
Since these calculations are independent, they can in principle
be done using different processors in parallel. If p is the
number of processors, this stage should have a cost ozN—Q, for
some constant o € R. After this calculation has been done, all
of the processors would have to ensure that all other processors
have access to the same updated data on planetary positions.
For a uni-processor this is unproblematic — there is only a
single state vector in memory. For multi-processors, however,
depending on their design, this communications phase can
be an appreciable overhead. If the gommunications is done
naively, the data-transfer cost is %, for 5 € R, because
processor to processor messages will grow as p? and each
message will have to send data on N/p planets. We can thus
model the overall time taken per simulation step as

N2

For a shared memory multi-processor, the communications
mechanism is effectively the memory bus in association with
the cache coherency mechanism, since each processor will
have updated its local cache copy of its own planets’ positions
in phase space, and these local cache copies will have to prop-
agate to the other machines. But this work is also proportional
to Np, since each of the p caches has to read a complete copy
of the positions of each of the planets. Other communications
architectures, including the one used on the SCC have a similar
cost structure.

A. Lino

The compiler group at the Glasgow University School of
Computing Science has performed evaluations of the Phase II
Challenge using a number of our experimental parallelising
compilers [?], [?], [?]. This section gives a detailed account
of one of those, the Lino system.

Lino is a scripting language originally targeted at the SCC,
but it also runs on other Linux machines. It allows Unix Shell
commands to be placed on tiles, which represent individual
processors in an array of available processors. A tile in Lino
is represented as [cmdO; cmdl; ... 1 where cmd0, cmdl, etc.
is some shell command.

Tiles can be named, and can be laid out in a rectilinear
grid using the ‘|” and ‘_’ operators. The |” operation can be

bl

shell read RCCE
command sender \

FIFO
Tlle A RCCE_send()
RCCE_recv()
shell write RCCE /
command receiver
FIFO
Tile B
Fig. 2. On the SCC, channels pass via named pipes and RCCE relay
processes.
— -
w s
-
Fig. 3. A 2-core Lino layout for the N-body problem, with one starter (tile

s) and one worker (tile w).

used to form a horizontal pipeline of processes running on
different processors; and the ‘_’ operator can be used to form
a vertical pipeline. Shell commands communicate with those
on adjacent processes by using appropriately named channels,
namely North, West, South, and East (Figure 1). Thus, the
sequence

[ls >East] | [sort <West >file]

will cause the 1s command to run on one tile, sending its
output to the east, where it is read by the sort command
on a right-adjacent tile, whose output goes to a sorted file.
Geometric operations of 90° rotation and reflection are also
supported on tiles or rectangular tile blocks. Tiles can be
replicated horizontally or vertically. For more details on the
Lino algebra, see []. [Need a reference here.]

The Lino compiler translates into standard bash Shell
scripts. In the case of the SCC, each tile is allocated a
processor core; on other machines, each tile becomes a Linux
process. In the latter case, the channels are mapped onto
appropriately named Linux FIFO file. On the SCC, however,
FIFO files do not work between cores so a five-stage commu-
nications process operates as shown in Figure 2.

When data are passed down a FIFO, a RCCE relay process
on the same core reads and sends them as RCCE messages to
a corresponding relay process on another core, before being
finally piped to another shell command. This approach allows
unmodified C and Shell programs to be linked up in the
SCC multi-core environment without the programs having to
know about the underlying communications mechanism. It
also allows us to benchmark parallel applications both on the
SCC and other Intel processors, using the same programmes
on both machines.

Without further ado, here is a simple Lino script to run a
potentially parallel version of the N-body problem:

controller = [./starter >East <East];
[./nbody >West <West];
controller | worker;

worker =
main =

The corresponding layout is shown in Figure 3. For the
N-body problem, consider two types of tiles, worker and
controller. Tiles are connected in a circle. The controller
communicates with p workers by messages. A message starts
with the character “D”, or “U”, or “S” to instruct the workers
to advance, or update, or terminate the celestial motion,
respectively; followed by the number of workers p; followed
by the current number of hops the messages has traversed;
followed by the positions, velocities, and masses of N bodies
— all in all, a 65KB message. A controller tile runs the
C programme starter which goes through the following
sequence:

1) read in the initial position of the planets from a file;
2) request from the worker(s) to perform one simulation
step on the data by:

a) writing the planet data, preceded by a “D” charac-
ter, on standard output, and

b) waiting for the corresponding “D” message to
arrive on standard input;

3) request the worker(s) to update the data by:

a) writing the planet data preceded by a “U” charac-
ter, on standard output; and

b) waiting for the corresponding “U” message to
arrive on standard input, and then storing the new
planet positions.

4) If the required number of simulation steps have finished,
send the worker(s) an “S” message on standard output
and terminate, otherwise go to step 2.

The N-body worker programme itself (referred to as
nbody) is a slightly modified version of the reference single
processor implementation in C, waiting (in a loop) to read
messages on standard input. The N-body programme branches
on the first character of the message as follows:

o if the header starts with a “D”, then increment the
increment the number of hops and write the message
to standard output. Then, simulate the dynamics of N/p
planets for one timestep, and remember their new posi-
tions in phase space;

o if the header starts with a “U”, then increment the number
of hops, and copy into the message the updated positions
of the planets for which the worker is responsible for,
before writing the message to standard output;

o if the message starts with an “S”, terminate.

This approach allows us to vary the number of workers
associated with each controler without changing the C code.
For example to have 4 workers we use the Lino script:

nwcorner = [./nbody >East <South];
swcorner = [./nbody >North <East];
scorner = [./starterd4d.sh >South <West];
corner = [cat >West <North];

passright = [./nbody >East <West];
passleft = [./nbody >West <East];

top = [nwcorner| passright | scorner];
bottom = [swcorner | passleft | corner];
main = top _ bottom;

E —m €

A

— w -—cat

Fig. 4. A layout with 4 worker cores.

TABLE V
TIME/SIMULATION STEP OF THE N-BODY PROBLEM IN LINO ON THE SCC
AND ON AN 8-CORE XEON

N-body workers (cores) Time on Xeon (ms) Time on SCC (ms)

16 (20) 8.1 2032
8 (10) 7.8 1025
4 (6) 9.9 702
2 (4) 17.1 648
12 30.5 967

This gives the layout shown in Figure ??. We have tested
layouts for 1, 2, 4, 8, and 16 worker cores, both on the SCC
and on an 8-core Xeon clocked at 2.4Ghz. On both machines,
the same C and Lino code was used. Results are given in Table
??. As with the results in Tables II-C and II for the Phase
I Challenge, the SCC performance was very slow compared
to that obtained on other Intel multi-core chips. The SCC is
almost two orders of magnitude slower than the Xeon. Some
of this may be attributed to the earlier version of GCC used on
the SCC, some to the slower clock used and some of it to the
earlied Pentium design used. But one might have hoped that
these disadvantages would have been offset by the opportunity
too use more parallelism. On the contrary, we find that the
SCC implementation peaks at 2 worker processes, whilst the
Xeon peaks at 8. That this slowdown is due to the inter core
communication mechanism on the SCC rather than to the use
of Linux FIFOs, is proven by the fact that the Xeon Lino
implementation which also used FIFOs but which did not use
RCCE was so much faster.

Fitting Equation 1 to the data in Table ??, we obtain for
the Xeon o = 27ns and S = 223ns whereas for the SCC
a = 677ns and 8 = 94us. Recall that « is the time to
compute the interaction between two planets and 3 the time
taken to communicate one planets data between two workers.
The SCC is slower on both counts, but is much slower on
communications. This means that the level of parallelism that
can be supported before the costs of communications comes
to dominate is lower on the SCC.

B. Other Implementations

Similar to the first phase of the SICSA Multi-core Chal-
lenge, Phase II concluded with a workshop at the University
of Glasgow. The results are summarized in Table ??, ordered
by their overall performance. Where multiple results were
reported for a given language/processor pair, we give the
fastest time reported.

Thomas Horstmeyer [?] reported on an implementation
using Eden [?]. As Table ?? shows, this had a relatively
poor performance, being slower than the single thread C

TABLE VI
BEST TIMES REPORTED FOR PHASE II ON 8-CORE XEONS

Implementation Threads Time (ms) Clock (Ghz)
Glasgow Pascal (SSE) 16 1.75 2.4
C++ (SSE) 12 2.05 2.27
Glasgow Pascal, AVX 4 2.12 3.1
Lino on Xeon 10 7.8 2.4
Go 16 8 2.4
C sequential 1 14 2.4
Eden 8 16.6 2.5
C# 12 18.2 2.33
Glasgow Fortran (E#) on Cell 12 23 3.2
GCC on Cell 1 45 3.2
Glasgow Pascal on Cell 4 48 3.2
Gnu Fortran on Cell 2 82 3.2
Lino on SCC 2 648 0.533

reference version, and about half the speed of Lino on the
same hardware. The C# implementation reported by Loidl
had similar performance [?]. Sampson, whose Phase I entry
was very fast, reported on an impressive implementation using
SSE vector intrinsics and Threading Building Blocks [?]. This
appears to have one of the fastest performances of all, which
is a credit to the efficiency of the TBB and the gains to be
had from SSE intrinsics.

The Glasgow results [?], [?], [?] are polarised according
to the processor and type of language used. Lino and Go
are slower than Pascal; the Cell is slower than conventional
Intel machines; and the SCC is slower than the Cell. This
ranking of machines is born out accross all results reported at
the workshop, although the lower clock speed of the SCC is
clearly a factor that has to be taken into account here. Indeed,
if we normalise for clock speed, the Lino on the SCC falls
into the same range of performance as GNU Fortran on the
Cell.

IV. CONCLUSIONS

The SCC is described as a Single Chip Cloud. The per-
formances we have observed for it indicate that this may
be an accurate description. On the concordance application
the SCC performance most closely resembled that of Hadoop
on a Beowulf cluster - a more classic cloud configuration.
Compared however with other multi-core chips : Nehalem,
Sandybridge or the CellBE, the SCC performs poorly on
both applications. We believe from our experiments, partic-
ularly those for Phase II, that the underlying cause for the
uncompetitive performance of the SCC is the inefficiency
of the inter-core communications system. Unlike the CellBE
which performs inter-core communications using high speed
DMA, or the Nehalem which uses cache coherence hardware,
the SCC relies on software message passing in small shared
buffers. We conclude that if tesselation processors like the SCC
are to be viable, they will require high performance DMA
hardware.

A separate conclusion from our experiments is that the old
Unix shell model of parallelism: C programmes communicat-
ing via files and pipes, is still remarkably effective. It gave the
highest performance for the Phase I problem and for Phase II,
it was only beaten by compilers that made explicit or implicit
use of SIMD parallelism.

Algorithm 2 The single worker N-body example compiled for the SCC.

#!/bin/sh

shift

[

!

‘expr $1 + 20
-d $1] && exit 1

cd $1

case

‘hostname' in

rck00)

mkfifo fifos/East0_0
mkfifo fifos/East0_0in
./apps/HELLO/hello 2 0.533 00 02 —--from fifos/East0_0 --to /dev/null &
./apps/HELLO/hello 2 0.533 02 00 —--from /dev/null --to fifos/East0_0in &

./starter.sh

> fifos/East0_0 < fifos/East0_0in

wait
rm fifos/East0_0
rm fifos/East0_0in

rr

rck02)

mkfifo fifos/WestO_1
mkfifo fifos/WestO_1lin
./apps/HELLO/hello 2 0.533 02 00 --from fifos/West0O_1 --to /dev/null &
./apps/HELLO/hello 2 0.533 00 02 —--from /dev/null --to fifos/West0O_1lin &

. /nbody

> fifos/West0_1 < fifos/WestO_1lin &

wait
rm fifos/WestO_1
rm fifos/West0O_1lin

rr

esac

&

Algorithm 1 The single worker N-body example compiled for
a shared memory Linux machine.

rm fifos/=*
mkfifo fifos/East0_0
mkfifo fifos/WestO_1

./starterl.sh

>fifos/East0_0 <fifos/West0_1&

./nbody <fifos/East0_0 >fifos/West0_1l&
wait
REFERENCES
[1] J. Singer, “Java/Fork Join Implementation,” in
First SICSA Multi-core Challenge Workshop, Heriot
Watt University, December 2010. [Online]. Available:
http://www.dcs.gla.ac.uk/ jsinger/pdfs/sicsa_concord_101213.pdf
[2] R. Stewart. (2010, December) Hadoop MapReduce
Concordance. SICSA Multi-Core Challenge Phase I
‘Workshop. Heriot Wat University. [Online]. Avail-
able: http://www.macs.hw.ac.uk/ rs46/multicore_challenge1/Hadoop

[3]

[5]

[6]

_concordance.pdf

M. Aljabri. (2010, December) A Parallel Concordance Benchmark,
Haskell Implementation. SICSA Multi-core Challenge Phase
I Workshop. Heriot Watt University. [Online]. Available:
http://www.macs.hw.ac.uk/ dsg/events/MultiCoreChallenge/slides/aljabri
_mcc10.pdf

(2010, December) A Parallel Concordance Benchmark,
OpenMP Implementation. SICSA Multi-core Challenge Phase
I Workshop. Heriot Watt University. [Online]. Available:
http://www.macs.hw.ac.uk/ dsg/events/MultiCoreChallenge/slides/aljabri
_mcc10.pdf

H.-W. Loidl. (2010, December)
in C#. SICSA Multi-core Challenge Phase I Work-
shop. Heriot Watt University. [Online]. Available:
http://www.macs.hw.ac.uk/ dsg/events/MultiCoreChallenge/slides/hawo
_mccl0.pdf

J. Kerridge. (2010, December) SICSA Concordance Challenge:Using
Groovy and the JCSP Library. SICSA Multi-core Challenge
Phase I Workshop. Heriot Watt University. [Online]. Available:
http://www.macs.hw.ac.uk/ dsg/events/MultiCoreChallenge/slides/jon
_mcc10.pptx

Parallel Concordance

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

A. Sampson. (2010, December) "This is a parallel parrot”. SICSA Multi-
core Challenge Phase I Workshop. Heriot Watt University. [Online].
Available: http://offog.org/publications/mcc201012-python-slides.pdf

P. Keir, W. Cockshott, and A. Richards, “Mainstream parallel
array programming on cell,” in 5th Workshop on Highly Parallel
Processing on a Chip (HPPC 2011), 2011. [Online]. Available:
http://eprints.gla.ac.uk/54875/

W. Cockshott and G. Michaelson, “Orthogonal parallel processing
in vector pascal,” Computer Languages, Systems and Structures.,
vol. 32, no. 1, pp. 2-41, April 2006. [Online]. Available:
http://eprints.gla.ac.uk/3451/

Y. Gdura and W. Cockshott, “A virtual simd machine approach
for abstracting heterogeneous multi-core,” in ICT 2011 18th
International Conference on Telecommunications, 2011. [Online].
Available: http://eprints.gla.ac.uk/56324/

M. D. Tobias Sauerwein, Thomas Horstmeyer. (2011, May)
N-Body in Eden - A skeletal approach in a distributed
memory setting. SICSA Multi-core Challenge Phase II Workshop.
Glasgow University. [Online]. Available: http://www.mathematik.uni-
marburg.de/ horstmey/sicsa/NBodyEdenSlides.pdf

A. Black and U. of Washington. Dept. of Computer Science, The Eden
programming language. Dept. of Computer Science, University of
‘Washington, 1985.

H.-W. Loidl. (2011, May) A C# implementation of
the n-body problem SICSA Multi-core Challenge
Phase 1II Workshop. Glasgow University. [Online]. Avail-

able: http://www.macs.hw.ac.uk/ dsg/events/MultiCoreChallenge/slides/
mccl1.pdf

A. Sampson. (2011, May) Colliding Blobs with Threading
Building Blocks . SICSA Multi-core Challenge Phase II Workshop.
Glasgow University. [Online]. Available: http://www.mathematik.uni-
marburg.de/ horstmey/sicsa/NBodyEdenSlides.pdf

Y. G. P. Cockshott. (2011, May) Vector Pascal implementations
running on Nehalem and Cell processors SICSA Multi-core
Challenge Phase IT Workshop. Glasgow University. [Online]. Available:
http://www.dcs.gla.ac.uk/ jsinger/pdfs/wpc_multicore.pdf

P. Keir. (2011, May) All-pairs n-body in Fortran for CellBE . SICSA
Multi-core Challenge Phase II Workshop. Glasgow University. [Online].
Available: http://www.dcs.gla.ac.uk/people/personal/pkeir/mcore2.pdf

I. McGinniss. (2011, May) Naive approaches to n-body parallelism using
Google Go . SICSA Multi-core Challenge Phase I Workshop. Glasgow
University. [Online]. Available: http://prezi.com/qrgmjzexqvgp/naive-
approaches-to-n-body-parallelism-with-google-go/

	citation_temp.pdf
	http://eprints.gla.ac.uk/58983/

