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Abstract. Electron tomography (ET) is an increasingly important technique for examining
the three-dimensional morphologies of nanostructures. ET involves the acquisition of a set of 2D
projection images to be reconstructed into a volumetric image by solving an inverse problem.
However, due to limitations in the acquisition process this inverse problem is considered ill-
posed (i.e., no unique solution exists). Furthermore reconstruction usually suffers from missing
wedge artifacts (e.g., star, fan, blurring, and elongation artifacts). Compressed sensing (CS) has
recently been applied to ET and showed promising results for reducing missing wedge artifacts
caused by limited angle sampling. CS uses a nonlinear reconstruction algorithm that employs
image sparsity as a priori knowledge to improve the accuracy of density reconstruction from a
relatively small number of projections compared to other reconstruction techniques. However,
The performance of CS recovery depends heavily on the degree of sparsity of the reconstructed
image in the selected transform domain. Prespecified transformations such as spatial gradients
provide sparse image representation, while synthesising the sparsifying transform based on
the properties of the particular specimen may give even sparser results and can extend the
application of CS to specimens that can not be sparsely represented with other transforms such
as Total variation (TV). In this work, we show that CS reconstruction in ET can be significantly
improved by tailoring the sparsity representation using a sparse dictionary learning principle.

1. Introduction
In materials science, Electron tomography (ET) is considered an effective technique that provides
indispensable information for the study of particles and structures in the Nanoworld. The
3D morphology of nanostructures can be provided by reconstruction of an aligned set of 2D
TEM images acquired around a single or double tilting axis. The reconstruction step in ET is
performed using an image reconstruction algorithm such as weighted back projection (WBP) or
simultaneous iterative reconstruction technique (SIRT). SIRT algorithm provides reconstruction
of a relatively higher Signal-to-noise ratio than those obtained using WBP. However, the
reconstruction still suffers from elongation, blurring and artifacts due to the missing wedge
limitation in ET. The number of projections that can be recorded is limited by the maximum
tilt angle (typically ± 72) above which projections can not be acquired. A segmentation step
is usually needed to overcome such artifacts and to distinguish between artifacts and main
components in the reconstruction. This segmentation process is often performed manually
leading to potentially subjective and time-consuming interpretation of the data.
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The reconstruction process of ET can be explained by considering a 3D object as a set of 2D
sections, the reconstruction of that object can then be created by reconstructing each 2D section
from the corresponding 1D projection. An object may be reconstructed from its projections by
solving a system of linear equations which can be modelled as:

Px = b (1)

Where P is the discrete Radon transform that converts the measurements (1D projections) b
into object domain (2D imaged object) x. To create a reconstruction (tomogram), the unknown
vector x needs to be calculated from measurements b which is not straightforward because of
the underdetermined nature of the reconstruction inverse problem due to the limited number
of projections. Also the reconstruction will be further degraded with the presence of noise and
alignment errors.

It is well-known that the quality of a tomographic reconstruction can be enhanced by including
additional prior knowledge about the specimen throughout the reconstruction process as in SIRT
and recently CS-based approaches. CS has been shown to be powerful technique to reducing
the artifacts that arise from ET reconstruction. The key prior knowledge employed in CS is
that the signal is sparse in a transform domain, meaning that it can be approximated in a more
compact form. This sparsity assumption can then be formulated as a problem of simultaneously
minimising a cost function consisting of a data consistency term and one or more sparsity
constraints in an appropriate transform domain (e.g., wavelets and TV). It should be noted
that, in order for the CS algorithm to be successful and effective, an object to be reconstructed
need to be compressible in a certain domain (for example, the TV can be used for reconstruction,
if the object under study can be described as a piecewise constant). However, many samples
do not satisfy such constraints, and therefore CS reconstruction can not be effective. Recently,
an algorithm (referred to as K-SVD) for training a dictionary for sparse signal representation
was proposed [1]. K-SVD is a signal representation approach which, from a set of signals, can
derive a dictionary able to approximate each signal with a sparse combination of the atoms.
The goal in this work is to make use of the K-SVD algorithm for designing sparsity dictionaries
and utilizing these dictionaries for CS recovery in ET.

2. CS Recovery with Adaptive Transform using K-SVD
In [2], Candes et al , discovered important results that formed the theoretical basis of compressed
sensing as currently studied, where an exact recovery of the SheppLogan phantom was obtained
from 22 radial samples of its discrete Fourier transform. This work kicked off the field of
compressed sensing theory and lead to successful application to other Inverse Problems such as
Magnetic Resonance Imaging (MRI) [3] and recently ET as in [4, 5, 6] and [7]. The reconstruction
in ET based on CS can be expressed in terms of minimizing the cost function in Eq.(2)

arg min
x

{
‖Px− b‖22 + λ‖Ψx‖1

}
(2)

where Ψ is a predefined sparse transform (such as wavelets and total variation). While
these transforms, especially total variation that have been proven to work well for the general
class of ET samples [5, 7], they are not optimized for each ET application. In EM, significant
prior information exists about the object being imaged and this prior information can be used
to design more efficient sparsity dictionaries for CS ET. The K-SVD [1] algorithm aims for
learning adaptive transforms (dictionary) Ψ and a sparse matrix Ω, such that for any signal
x, there exists a sparse linear combination from Ψ that minimizes the representation error by
solving:

arg min
Ψ,Ω
‖x−ΨΩ‖22 s.t ‖ωi‖0 ≤ v,∀i (3)
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Where ωi are columns of Ω, and v is the desired sparsity. In this work, the K-SVD algorithm
will be used for designing adaptive sparsity dictionaries for a restricted class of ET images and
utilizing these dictionaries for CS recovery. The sparsity in the proposed method is enforced on
overlapping patches of the reconstructed image x and the dictionary is directly adapted to the
image leading to higher reconstruction fidelity. For reconstruction in ET, the proposed algorithm
can be formulated as in Eq.(4)

arg min
α,Ψ,x

∑
ij

{
‖Bijx−Ψωij‖22 + λ ‖Px− y‖22

}
s.t ‖ωij‖0 ≤ v, ∀i, j(4)

Here, Bij is a mapping operator that extracts a square patchs of size
√
n ×
√
n from image x;

Ψωij is the sparse approximation of the patch, with the maximum number of non-zero values ≤
v; Ψ is the trained dictionary; Ω is the set {ωij}ij ; and v is a positive constant.

The first term in Eq.(4) measures the quality of the sparse approximations of the image
patches with respect to the dictionary Ψ. The second term in the cost forces data fidelity in
image domain. In one step (dictionary learning), x is assumed fixed, and the dictionary is
learned with the sparse representations of the image patches. In the other step (reconstruction
update), Ψ and Ω are fixed, and x is updated to satisfy data consistency. The reconstruction
update step involves a least squares problem that can be solved using the corresponding normal
equation and employing the conjugate gradient method that is initialized with a zero-filled
Fourier reconstruction for x. v is the sparsity threshold in the K-SVD algorithm: higher v
produces fewer atoms to approximate a patch in the sparse coding step.

3. Results
To evaluate the quality and accuracy of proposed reconstruction algorithm, the CS test phantom
(CS-phantom) proposed in [8] is used (Figure 1-a). CS-phantom is tailored for testing the
accuracy and properties of CS solvers in the noise-free domain. For comparisons, we performed
the reconstruction using a WBP method (Figure 1-b), a TV-based method (Figure 1-c), and
proposed approach (Figure 1-d) using simulated data set consisted of 27 projections. Peak Signal
to Noise Ratio (PSNR) in dB is showed for the reconstruction in (Table 1). The reconstruction
scheme outlined in this work is shown to produce substantially better reconstruction both
visually and in terms of PSNR, as compared to the WBP and TV-based method.

Figure 1. Reconstructed phantom images, (a) CS-phantom used for the simulation of a tilt
series from −65◦ to 65◦ with an increment of 5◦. (b) WBP (c) CS TV based algorithm (d)
proposed method.
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Table 1. PSNR of reconstructions.

Technique CS-phantom

WBP 8.20 dB
CS-TV 21.17 dB
CS-Dictionary 30.5 dB

4. Conclusions and Discussion
A novel sparse reconstruction technique that incorporates prior information through dictionary
training is introduced for CS in ET. Reconstruction results illustrate that the proposed technique
can yield significantly improved image quality compared to commonly used sparsity transforms
in CS ET. Future work will explore other interesting properties of the dictionary that may
provide even more advanced reconstruction for highly under sampled ET.
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