27 research outputs found

    Spatiotemporal Coordination Supports a Sense of Commitment in Human-Robot Interaction

    Get PDF
    In the current study, we presented participants with videos in which a humanoid robot (iCub) and a human agent were tidying up by moving toys from a table into a container. In the High Coordination condition, the two agents worked together in a coordinated manner, with the human picking up the toys and passing them to the robot. In the Low Coordination condition, they worked in parallel without coordinating. Participants were asked to imagine themselves in the position of the human agent and to respond to a battery of questions to probe the extent to which they felt committed to the joint action. While we did not observe a main effect of our coordination manipulation, the results do reveal that participants who perceived a higher degree of coordination also indicated a greater sense of commitment to the joint action. Moreover, the results show that participants’ sensitivity to the coordination manipulation was contingent on their prior attitudes towards the robot: participants in the High Coordination condition reported a greater sense of commitment than participants in the Low Coordination condition, except among those participants who were a priori least inclined to experience a close sense of relationship with the robot

    Technical and Economical Evaluation of Vacuum Insulated Panels for A European Freezer

    Get PDF

    Oligopeptides and copeptides of homochiral sequence, via beta-sheets, from mixtures of racemic alpha-amino acids, in a one-pot reaction in water; relevance to biochirogenesis.

    No full text
    International audienceAs part of our studies on the biochirogenesis of peptides of homochiral sequence during early evolution, the formation of oligopeptides composed of 14-24 residues of the same handedness in the polymerization of dl-leucine (Leu), dl-phenylalanine (Phe), and dl-valine (Val) in aqueous solutions, by activation with N, N'-carbonyldiimidazole and then initiation with a primary amine, in a one-pot reaction, was demonstrated by MALDI-TOF MS using deuterium enantio-labeled alpha-amino acids. The formation of long isotactic peptides is rationalized by the following steps occurring in tandem: (i) creation of a library of short diasteroisomeric oligopeptides containing isotactic peptides in excess in comparison to a binomial kinetics, as a result of an asymmetric induction exerted by the N-terminal residue of a given handedness; (ii) precipitation of the less soluble racemic isotactic penta- and hexapeptides in the form of beta-sheets that are delineated by homochiral rims; (iii) regio-enantiospecific chain elongation occurring heterogeneously at the beta-sheets/solution interface. Polymerization of l-Leu with l-isoleucine (Ile) or l-Phe with l- (1) N-Me-histidine yielded mixtures of copeptides containing both residues. In contrast, in the polymerization of the corresponding mixtures of l- + d-alpha-amino acids, the long oligopeptides were composed mainly from oligo- l-Leu and oligo- d-Ile in the first system and oligo- d-Phe in the second. Furthermore, in the polymerization of mixtures of hydrophobic racemic alpha-amino acids dl-Leu, dl-Val, and dl-Phe and with added racemic dl-alanine and dl-tyrosine, copeptides of homochiral sequences are most dominantly represented. Possible routes for a spontaneous "mirror-symmetry breaking" process of the racemic mixtures of homochiral peptides are presented

    Experimental and simulation results for the removal of H2S from biogas by means of sodium hydroxide in structured packed columns

    No full text
    Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm

    The Wisconsin sociologist

    Get PDF
    MuMMER (MultiModal Mall Entertainment Robot) is a four-year, EU-funded project with the overall goal of developing a humanoid robot (SoftBank Robotics’ Pepper robot being the primary robot platform) with the social intelligence to interact autonomously and naturally in the dynamic environments of a public shopping mall, providing an engaging and entertaining experience to the general public. Using co-design methods, we will work together with stakeholders including customers, retailers, and business managers to develop truly engaging robot behaviours. Crucially, our robot will exhibit behaviour that is socially appropriate and engaging by combining speech-based interaction with non-verbal communication and human-aware navigation. To support this behaviour, we will develop and integrate new methods from audiovisual scene processing, social-signal processing, high-level action selection, and human-aware robot navigation. Throughout the project, the robot will be regularly deployed in Ideapark, a large public shopping mall in Finland. This position paper describes the MuMMER project: its needs, the objectives, R&D challenges and our approach. It will serve as reference for the robotics community and stakeholders about this ambitious project, demonstrating how a co-design approach can address some of the barriers and help in building follow-up projects
    corecore