70 research outputs found

    Towards a sustainable and equitable blue economy

    Get PDF
    The global rush to develop the \u2018blue economy\u2019 risks harming both the marine environment and human wellbeing. Bold policies and actions are urgently needed. We identify five priorities to chart a course towards an environmentally sustainable and socially equitable blue economy

    Including Pathogen Risk in Life Cycle Assessment of Wastewater Management. 1. Estimating the Burden of Disease Associated with Pathogens

    Get PDF
    The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2–9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28 600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series

    From sea monsters to charismatic megafauna: changes in perception and use of large marine animals

    Get PDF
    Marine megafauna has always elicited contrasting feelings. In the past, large marine animals were often depicted as fantastic mythological creatures and dangerous monsters, while also arousing human curiosity. Marine megafauna has been a valuable resource to exploit, leading to the collapse of populations and local extinctions. In addition, some species have been perceived as competitors of fishers for marine resources and were often actively culled. Since the 1970s, there has been a change in the perception and use of megafauna. The growth of marine tourism, increasingly oriented towards the observation of wildlife, has driven a shift from extractive to non-extractive use, supporting the conservation of at least some species of marine megafauna. In this paper, we review and compare the changes in the perception and use of three megafaunal groups, cetaceans, elasmobranchs and groupers, with a special focus on European cultures. We highlight the main drivers and the timing of these changes, compare different taxonomic groups and species, and highlight the implications for management and conservation. One of the main drivers of the shift in perception, shared by all the three groups of megafauna, has been a general increase in curiosity towards wildlife, stimulated inter alia by documentaries (from the early 1970s onwards), and also promoted by easy access to scuba diving. At the same time, environmental campaigns have been developed to raise public awareness regarding marine wildlife, especially cetaceans, a process greatly facilitated by the rise of Internet and the World Wide Web. Currently, all the three groups (cetaceans, elasmobranchs and groupers) may represent valuable resources for ecotourism. Strikingly, the economic value of live specimens may exceed their value for human consumption. A further change in perception involving all the three groups is related to a growing understanding and appreciation of their key ecological role. The shift from extractive to non-extractive use has the potential for promoting species conservation and local economic growth. However, the change in use may not benefit the original stakeholders (e.g. fishers or whalers) and there may therefore be a case for providing compensation for disadvantaged stakeholders. Moreover, it is increasingly clear that even non-extractive use may have a negative impact on marine megafauna, therefore regulations are needed.SFRH/BPD/102494/2014, UID/MAR/04292/2019, IS1403info:eu-repo/semantics/publishedVersio

    Oceans and Coastal Ecosystems and Their Services

    Get PDF
    Ocean and coastal ecosystems support life on Earth and many aspects of human well-being. Covering two-thirds of the planet, the ocean hosts vast biodiversity and modulates the global climate system by regulating cycles of heat, water and elements, including carbon. Marine systems are central to many cultures, and they also provide food, minerals, energy and employment to people. Since previous assessments1 , new laboratory studies, field observations and process studies, a wider range of model simulations, Indigenous knowledge, and local knowledge have provided increasing evidence on the impacts of climate change on ocean and coastal systems, how human communities are experiencing these impacts, and the potential solutions for ecological and human adaptation.Peer reviewe

    Artificial neural networks to forecast biomass of Pacific sardine and its environment

    Get PDF
    We tested the forecasting performance of artificial neural networks (ANNs) using several time series of environmental and biotic data pertaining to the California Current (CC) neritic ecosystem. ANNs performed well predicting CC monthly 10-m depth temperature up to nine years in advance, using temperature recorded at Scripps Institution of Oceanography pier. Annual spawning biomass of Pacific sardine (Sardinops sagax caeruleus) was forecasted reasonably well one year in advance using time series of water temperature, wind speed cubed, egg and larval abundance, commercial catch, and spawning biomass of northern anchovy (Engraulis mordax) and Pacific sardine as predictors, We discuss our results and focus on the philosophy and potential problems faced during ANN modelling.</jats:p

    Ecotourism, climate change and reef fish consumption in Palau: Benefits, trade-offs and adaptation strategies

    No full text
    Marine ecosystems play a central role in economic and social life in the Republic of Palau, a Small Island Developing State in the Western Pacific. Marine resources underpin subsistence and commercial fisheries, as well as tourism activities, contributing substantially to Palau\u27s GDP and employment. Since 1992, Palau has been actively developing conservation initiatives to protect marine resources, promote ecotourism, and ensure revenue generation. Marine reserves represent a particularly important tool in the country\u27s sustainable development strategy. In 2015, Palau designated 80% of its marine EEZ as a National Marine Sanctuary, with the remaining 20% slated for domestic fisheries. That same year, Palau received 160 thousand tourists, over 9 times the country\u27s population. In early 2017, the President proposed a bill effectively limiting budget travel and actively promoting high-end tourism. This study uses a quantitative social-ecological model to explore policy scenarios involving tourism, marine conservation and local food security. While climate change had the largest expected impact on local ecosystems, reef fish consumption contributes considerably to future projected declines in marine resources. Therefore, for Palau to achieve its goals of boosting revenues while sustainably stewarding marine resources, it will be necessary to transfer some level of consumption from reef fish on to tuna and other pelagics. Such changes, which align with the current proposal of developing an offshore national fishery as part of the Sanctuary\u27s management plan, may allow Palau to meet future seafood demand, while protecting reef systems and the industries that rely on them
    corecore