20 research outputs found

    Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population

    Get PDF
    Biomarkers of low-grade inflammation have been associated with susceptibility to a severe infectious disease course, even when measured prior to disease onset. We investigated whether metabolic biomarkers measured by nuclear magnetic resonance (NMR) spectroscopy could be associated with susceptibility to severe pneumonia (2507 hospitalised or fatal cases) and severe COVID-19 (652 hospitalised cases) in 105,146 generally healthy individuals from UK Biobank, with blood samples collected 2007-2010. The overall signature of metabolic biomarker associations was similar for the risk of severe pneumonia and severe COVID-19. A multi-biomarker score, comprised of 25 proteins, fatty acids, amino acids, and lipids, was associated equally strongly with enhanced susceptibility to severe COVID-19 (odds ratio 2.9 [95%CI 2.1-3.8] for highest vs lowest quintile) and severe pneumonia events occurring 7-11 years after blood sampling (2.6 [1.7-3.9]). However, the risk for severe pneumonia occurring during the first 2 years after blood sampling for people with elevated levels of the multi-biomarker score was over four times higher than for long-term risk (8.0 [4.1-15.6]). If these hypothesis generating findings on increased susceptibility to severe pneumonia during the first few years after blood sampling extend to severe COVID-19, metabolic biomarker profiling could potentially complement existing tools for identifying individuals at high risk. These results provide novel molecular understanding on how metabolic biomarkers reflect the susceptibility to severe COVID-19 and other infections in the general population.Molecular Epidemiolog

    Learning with multiple pairwise kernels for drug bioactivity prediction

    Get PDF
    Motivation: Many inference problems in bioinformatics, including drug bioactivity prediction, can be formulated as pairwise learning problems, in which one is interested in making predictions for pairs of objects, e.g. drugs and their targets. Kernel-based approaches have emerged as powerful tools for solving problems of that kind, and especially multiple kernel learning (MKL) offers promising benefits as it enables integrating various types of complex biomedical information sources in the form of kernels, along with learning their importance for the prediction task. However, the immense size of pairwise kernel spaces remains a major bottleneck, making the existing MKL algorithms computationally infeasible even for small number of input pairs.Results: We introduce pairwiseMKL, the first method for time- and memory-efficient learning with multiple pairwise kernels. pairwiseMKL first determines the mixture weights of the input pairwise kernels, and then learns the pairwise prediction function. Both steps are performed efficiently without explicit computation of the massive pairwise matrices, therefore making the method applicable to solving large pairwise learning problems. We demonstrate the performance of pairwiseMKL in two related tasks of quantitative drug bioactivity prediction using up to 167 995 bioactivity measurements and 3120 pairwise kernels: (i) prediction of anticancer efficacy of drug compounds across a large panel of cancer cell lines; and (ii) prediction of target profiles of anticancer compounds across their kinome-wide target spaces. We show that pairwiseMKL provides accurate predictions using sparse solutions in terms of selected kernels, and therefore it automatically identifies also data sources relevant for the prediction problem

    Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors

    Get PDF
    Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based modeling approach offers practical benefits for probing novel insights into the mode of action of investigational compounds, and for the identification of new target selectivities for drug repurposing applications

    Crowdsourced mapping of unexplored target space of kinase inhibitors

    Get PDF
    Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome. The IDG-DREAM Challenge carried out crowdsourced benchmarking of predictive algorithms for kinase inhibitor activities on unpublished data. This study provides a resource to compare emerging algorithms and prioritize new kinase activities to accelerate drug discovery and repurposing efforts

    Wirusowe choroby owadow lesnych

    No full text

    Effects of general and central adiposity on circulating lipoprotein, lipid, and metabolite levels in UK Biobank:A multivariable Mendelian randomization study

    No full text
    BACKGROUND: The direct effects of general adiposity (body mass index (BMI)) and central adiposity (waist-to-hip-ratio (WHR)) on circulating lipoproteins, lipids, and metabolites are unknown. METHODS: We used new metabolic data from UK Biobank (N=109,532, a five-fold higher N over previous studies). EDTA-plasma was used to quantify 249 traits with nuclear-magnetic-resonance spectroscopy including subclass-specific lipoprotein concentrations and lipid content, plus pre-glycemic and inflammatory metabolites. We used univariable and multivariable two-stage least-squares regression models with genetic risk scores for BMI and WHR as instruments to estimate total (unadjusted) and direct (mutually-adjusted) effects of BMI and WHR on metabolic traits; plus effects on statin use and interaction by sex, statin use, and age (proxy for medication use). FINDINGS: Higher BMI decreased apolipoprotein B and low-density lipoprotein cholesterol (LDL-C) before and after WHR-adjustment, whilst BMI increased triglycerides only before WHR-adjustment. These effects of WHR were larger and BMI-independent. Direct effects differed markedly by sex, e.g., triglycerides increased only with BMI among men, and only with WHR among women. Adiposity measures increased statin use and showed metabolic effects which differed by statin use and age. Among the youngest (38-53y, statins-5%), BMI and WHR (per-SD) increased LDL-C (total effects: 0.04-SD, 95%CI=-0.01,0.08 and 0.10-SD, 95%CI=0.02,0.17 respectively), but only WHR directly. Among the oldest (63-73y, statins-29%), BMI and WHR directly lowered LDL-C (-0.19-SD, 95%CI=-0.27,-0.11 and -0.05-SD, 95%CI=-0.16,0.06 respectively). INTERPRETATION: Excess adiposity likely raises atherogenic lipid and metabolite levels exclusively via adiposity stored centrally, particularly among women. Apparent effects of adiposity on lowering LDL-C are likely explained by an effect of adiposity on statin use. FUNDING: UK Medical Research Council; British Heart Foundation; Novo Nordisk; National Institute for Health Research; Wellcome Trust; Cancer Research U

    Machine learning and feature selection for drug response prediction in precision oncology applications

    Get PDF
    In-depth modeling of the complex interplay among multiple omics data measured from cancer cell lines or patient tumors is providing new opportunities toward identification of tailored therapies for individual cancer patients. Supervised machine learning algorithms are increasingly being applied to the omics profiles as they enable integrative analyses among the high-dimensional data sets, as well as personalized predictions of therapy responses using multi-omics panels of response-predictive biomarkers identified through feature selection and cross-validation. However, technical variability and frequent missingness in input “big data” require the application of dedicated data preprocessing pipelines that often lead to some loss of information and compressed view of the biological signal. We describe here the state-of-the-art machine learning methods for anti-cancer drug response modeling and prediction and give our perspective on further opportunities to make better use of high-dimensional multi-omics profiles along with knowledge about cancer pathways targeted by anti-cancer compounds when predicting their phenotypic responses.Peer reviewe
    corecore