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Abstract

Motivation: Many inference problems in bioinformatics, including drug bioactivity prediction, can

be formulated as pairwise learning problems, in which one is interested in making predictions for

pairs of objects, e.g. drugs and their targets. Kernel-based approaches have emerged as powerful

tools for solving problems of that kind, and especially multiple kernel learning (MKL) offers promis-

ing benefits as it enables integrating various types of complex biomedical information sources in

the form of kernels, along with learning their importance for the prediction task. However, the im-

mense size of pairwise kernel spaces remains a major bottleneck, making the existing MKL algo-

rithms computationally infeasible even for small number of input pairs.

Results: We introduce pairwiseMKL, the first method for time- and memory-efficient learning with

multiple pairwise kernels. pairwiseMKL first determines the mixture weights of the input pairwise

kernels, and then learns the pairwise prediction function. Both steps are performed efficiently with-

out explicit computation of the massive pairwise matrices, therefore making the method applicable

to solving large pairwise learning problems. We demonstrate the performance of pairwiseMKL in

two related tasks of quantitative drug bioactivity prediction using up to 167 995 bioactivity meas-

urements and 3120 pairwise kernels: (i) prediction of anticancer efficacy of drug compounds across

a large panel of cancer cell lines; and (ii) prediction of target profiles of anticancer compounds

across their kinome-wide target spaces. We show that pairwiseMKL provides accurate predictions

using sparse solutions in terms of selected kernels, and therefore it automatically identifies also

data sources relevant for the prediction problem.

Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco.

Contact: anna.cichonska@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the recent years, several high-throughput anticancer drug screen-

ing efforts have been conducted (Barretina et al., 2012; Smirnov

et al., 2018; Yang et al., 2012), providing bioactivity measurements

that allow for the identification of compounds that show increased

efficacy in specific human cancer types or individual cell lines, there-

fore guiding both the precision medicine efforts as well as drug

repurposing applications. However, chemical compounds execute

their action through modulating typically multiple molecules, with

proteins being the most common molecular targets, and ultimately

both the efficacy and toxicity of the treatment are a consequence of

those complex molecular interactions. Hence, elucidating drug’s

mode of action (MoA), including both on- and off-targets, is critical

for the development of effective and safe therapies.

The increased availability of drug bioactivity data for cell lines

(Smirnov et al., 2018) and protein targets (Merget et al., 2017), to-

gether with the comprehensive characteristics of drug compounds,

proteins and cell lines, has enabled construction of supervised ma-

chine learning models, which offer cost-effective means for fast, sys-

tematic and large-scale pre-screening of chemical compounds and

their potential targets for further experimental verification, with the

aim of accelerating and de-risking the drug discovery process
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(Ali et al., 2017; Azuaje, 2017; Cheng et al., 2012; Cichonska et al.,

2015). Under the general framework of drug bioactivity prediction,

two related machine learning tasks are identified: (i) prediction of

anticancer drug responses and (ii) prediction of drug–protein inter-

actions, both of which can be tackled through similar machine learn-

ing techniques. In particular, kernel-based approaches have emerged

as powerful tools in computational drug discovery (Cichonska et al.,

2017; Marcou et al., 2016; Pahikkala et al., 2015).

Both the drug response in cancer cell line prediction and drug–

protein interaction prediction are representative examples of pairwise

learning problems, where the goal is to build predictive model for

pairs of objects. Classical kernel-based methods for pairwise learning

rely merely on a single pairwise kernel. However, such approaches

are unlikely to be optimal in applications where a growing variety of

biological and molecular data sources are available, including chem-

ical and protein structures, pharmacophore patterns, gene expression

signatures, methylation profiles as well as genomic variants found in

cell lines. In fact, the advantage of integrating different data types for

the multi-level analysis has been highlighted in the recent studies

(Ebrahim et al., 2016; Elefsinioti et al., 2016). Multiple kernel learn-

ing (MKL) methods, which search for an optimal combination of sev-

eral kernels, hence enabling the use of different information sources

simultaneously and learning their importance for the prediction task,

have therefore received significant attention in bioinformatics

(Brouard et al., 2016; Kludas et al., 2016; Shen et al., 2014), especial-

ly in drug bioactivity inference (Ammad-ud-din et al., 2016; Costello

et al., 2014; Nascimento et al., 2016).

However, the existing MKL methods do not scale up to the mas-

sive size of pairwise kernels, in terms of both processing and mem-

ory requirements, making the kernel weights optimization and

model training computationally infeasible even for small numbers of

input pairs, such as drugs and cell lines or drugs and protein targets.

The recently introduced KronRLS-MKL algorithm for pairwise

learning of drug–protein interactions interleaves the optimization of

the pairwise prediction function parameters with the kernel weights

optimization (Nascimento et al., 2016). However, it finds two sets

of kernel weights, separately for drug kernels and protein kernels in-

stead of pairwise kernels, and therefore it does not fully exploit the

information contained in the pairwise space.

Here, we propose pairwiseMKL, to our knowledge, the first

method for time- and memory-efficient learning with multiple pair-

wise kernels, implementing both efficient pairwise kernel weights

optimization and pairwise model training. In the first phase, the al-

gorithm determines a convex combination of input pairwise kernels

by maximizing the centered alignment (i.e. matrix similarity meas-

ure) between the final combined kernel and the ideal kernel derived

from the label values (response kernel); in the second phase, the

pairwise prediction function is learned. Both steps are performed

without explicit construction of the massive pairwise matrices

(Fig. 1). We demonstrate the performance of pairwiseMKL in two

important subtasks of quantitative drug bioactivity prediction. In

case of drug response in cancer cell line prediction subtask, we used

the bioactivity data from 15 376 drug–cell line pairs from the

Genomics of Drug Sensitivity in Cancer (GDSC) project (Yang

et al., 2012). We encoded similarities between the drug compounds

and cell lines using kernels constructed based on various types of

molecular fingerprints, gene expression profiles, methylation pat-

terns, copy number data and genetic variants, resulting in 120 pair-

wise kernels (10 drug kernels�12 cell line kernels). In the larger

subtask of drug–protein binding affinity prediction, we used the re-

cently published bioactivities from 167 995 drug–protein pairs

(Merget et al., 2017) and constructed 3120 pairwise kernels

(10 drug kernels�312 protein kernels) based on molecular finger-

prints, protein sequences and gene ontology annotations. We show

that pairwiseMKL is very well-suited for solving large pairwise

learning problems, it outperforms KronRLS-MKL in terms of both

memory requirements and predictive power, and, unlike KronRLS-

MKL, it (i) allows for missing values in the label matrix and (ii) finds

a sparse combination of input pairwise kernels, thus enabling auto-

matic identification of data sources most relevant for the prediction

task. Moreover, since pairwiseMKL scales up to large number of

pairwise kernels, tuning of the kernel hyperparameters can be easily

incorporated into the kernel weights optimization process.

In summary, this article makes the following contributions.

• We implement a highly efficient centered kernel alignment pro-

cedure to avoid explicit computation of multiple huge pairwise

matrices in the selection of mixture weights of input pairwise

kernels. To achieve this, we propose a novel Kronecker decom-

position of the centering operator for the pairwise kernel.
• We introduce a Gaussian response kernel which is more suitable

for the kernel alignment in a regression setting than a standard

linear response kernel.
• We introduce a method for training a regularized least-squares

model with multiple pairwise kernels by exploiting the structure

of the weighted sum of Kronecker products. We therefore avoid

explicit construction of any massive pairwise matrices also in the

second stage of learning pairwise prediction function.
• We show how to effectively utilize the whole exome sequencing

data to calculate informative real-valued genetic mutation profile

feature vectors for cancer cell lines, instead of binary mutation sta-

tus vectors commonly used in drug response prediction models.
• pairwiseMKL provides a general approach to MKL in pairwise

spaces, and therefore it is widely applicable also outside the drug

bioactivity inference problems. Our implementation is freely

available.

2 Materials and methods

This section is organized as follows. First, Section 2.1 explains a

general approach to two-stage multiple pairwise kernel regression

which forms the basis for our pairwiseMKL method described in

Section 2.2. We demonstrate the performance of pairwiseMKL in

the two tasks of (i) anticancer drug potential prediction and (ii)

drug–protein binding affinity prediction, but we selected the former

as an example to explain the methodology. Finally, Section 2.3

introduces the data and kernels we used in our experiments.

2.1 Multiple pairwise kernel regression
In supervised pairwise learning of anticancer drug potential, training

data appears in the form xd;xc; yð Þ, where xd;xcð Þ denotes a feature

representation of a pair of input objects, drug xd 2 XD and cancer cell

line xc 2 XC (e.g. molecular fingerprint vector and gene expression

profile, respectively), and y 2 R is its associated response value

(also called the label), i.e. a measurement of sensitivity of cell line xc

to drug xd. Given N � nd � nc training instances, they can be repre-

sented as matrices Xd 2 Rnd�td ; Xc 2 Rnc�tc and label vector

y 2 RN, where nd denotes the number of drugs, nc the number of cell

lines, td and tc the number of drug and cell line features, respectively.

The aim is to find a pairwise prediction function f that models the

relationship between Xd;Xcð Þ and y; f can later be used to predict sensi-

tivity measurements for drug–cell line pairs outside the training space.

The assumption is that structurally similar drugs show similar effects in

cell lines having common genomic backgrounds. We apply kernels to

i510 A.Cichonska et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/34/13/i509/5045738 by Turun Yliopiston Kirjasto user on 04 O
ctober 2018



encode the similarities between input objects, such as drugs or cell lines.

Kernels offer the advantage of increasing the power of classical linear

learning algorithms by providing a computationally efficient approach

for projecting input objects into a new feature space with very high

or even infinite number of dimensions. A linear model in this implicit

feature space corresponds to a non-linear model in the original space

(Shawe-Taylor and Cristianini, 2004). Formally, a kernel is a positive

semidefinite (PSD) function that for all xd; x
0
d 2 XD satisfies

kd xd; x
0
d

� �
¼ h/ xdð Þ;/ x0d

� �
i, where / denotes a mapping from the in-

put space XD to a high-dimensional inner product feature space H D,

i.e. / : xd 2 XD ! / xdð Þ 2 H D (the same holds for cell line kernel

kc). It is, however, possible to avoid explicit computation of the map-

ping / and define the kernel directly in terms of the original input fea-

tures, such as gene expression profiles, by replacing the inner product

h�; �i with an appropriately chosen kernel function (so-called kernel

trick), e.g. the Gaussian kernel (Shawe-Taylor and Cristianini, 2004).

Kernels can be easily employed for pairwise learning by con-

structing a pairwise kernel matrix K 2 RN�N relating all drug–cell

line pairs. Specifically, K is calculated as a Kronecker product of

drug kernel Kd 2 Rnd�nd (computed from, e.g. drug fingerprints)

and cell line kernel Kc 2 Rnc�nc (computed from, e.g. gene expres-

sion), forming a block matrix with all possible products of entries of

Kd and Kc:

K ¼ Kd � Kc

¼

kd xd1;xd1ð ÞKc kd xd1; xd2ð ÞKc � � � kd xd1; xdnd

� �
Kc

kd xd2;xd1ð ÞKc kd xd2; xd2ð ÞKc � � � kd xd2; xdnd

� �
Kc

..

. ..
. . .

. ..
.

kd xdnd
; xd1

� �
Kc kd xdnd

;xd2

� �
Kc � � � kd xdnd

;xdnd

� �
Kc

0
BBBBBB@

1
CCCCCCA:

(1)

Then, the prediction function for a test pair (xd; xc) is expressed

as

f xd; xcð Þ ¼
XN
l¼1

alk xd l; xc lð Þ; xd;xcð Þð Þ ¼ aT k; (2)

where k is a column vector with kernel values between each training

drug–cell line pair (xd l; xc l) and test pair (xd; xc) for which the pre-

diction is made, and a ¼ a1; . . . ; aNð Þ denotes a vector of model

parameters to be obtained by the learning algorithm through mini-

mizing a certain objective function. In kernel ridge regression (KRR,

Saunders et al., 1998), the objective function is defined in terms of

total squared loss along with L2-norm regularizer, and the solution

for a is found by solving the following system of linear equations:

Kþ kIð Þa ¼ y; (3)

where k indicates a regularization hyperparameter controlling the

balance between training error and model complexity k > 0ð Þ, and I

is the N�N identity matrix.

Due to the wide availability of different chemical and genomic

data sources, both drugs and cell lines can be represented with mul-

tiple kernel matrices K
1ð Þ

d ; . . . ;K
pdð Þ

d and K 1ð Þ
c ; . . . ;K pcð Þ

c , therefore

forming P ¼ pd � pc pairwise kernels K 1ð Þ; . . . ;K Pð Þ (Kronecker

products of all pairs of drug kernels and cell line kernels). The goal

of two-stage multiple pairwise KRR is to first find the combination

of P pairwise kernels

Kl ¼
XP

i¼1

liK
ið Þ; (4)

and then use Kl instead of K in Equation (3) to learn the pairwise

prediction function.

Fig. 1. Schematic figure showing an overview of pairwiseMKL method for learning with multiple pairwise kernels, using the drug response in cancer cell line pre-

diction as an example. First, two drug kernels and three cell line kernels are calculated from available chemical and genomic data sources, respectively. The

resulting matrices associate all drugs and all cell lines, and therefore a kernel can be considered as a similarity measure. Since we are interested in learning bioac-

tivities of pairs of input objects, here drug–cell line pairs, pairwise kernels relating all drug–cell line pairs are needed, and they are calculated as Kronecker prod-

ucts (�) of drug kernels and cell line kernels (2 drug kernels� 3 cell line kernels¼ 6 pairwise kernels). In the first learning stage, pairwise kernel mixture weights

are determined (Section 2.2.1), and then a weighted combination of pairwise kernels is used for anticancer drug response prediction with a regularized least-

squares pairwise regression model (Section 2.2.2). Importantly, pairwiseMKL performs those two steps efficiently by avoiding explicit construction of any mas-

sive pairwise matrices, and therefore it is very well-suited for solving large pairwise learning problems

pairwiseMKL i511
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2.1.1 Centered kernel alignment

The observation that a similarity between the centered input kernel

K ið Þ and a linear kernel derived from the labels Ky ¼ yyT (response

kernel) correlates with the performance of K ið Þ in a given prediction

task, has inspired a design of the centered kernel alignment-based

MKL approach (Cortes et al., 2012). Both K ið Þ and Ky measure simi-

larities between drug–cell line pairs. However, Ky can be considered

as a ground-truth as it is calculated from the bioactivities which we

aim to predict, and hence the ideal input kernel would capture the

same information about the similarities of drug–cell line pairs as the

response kernel Ky. The idea is to first learn a linear mixture of cen-

tered input kernels that is maximally aligned to the response kernel,

and then use the learned mixture kernel as the input kernel for learn-

ing a prediction function.

Centering a kernel K corresponds to centering its associated fea-

ture mapping /, and it is performed by bK ¼ CKC, where C 2 RN�N

is an idempotent (C ¼ CC) centering operator of the form I� 11T

N

h i
,

I indicates N�N identity matrix, and 1 is a vector of N compo-

nents, all equal to 1 (Cortes et al., 2012). Centered kernel alignment

measures the similarity between two kernels bK and bK 0:
A bK; bK 0� �

¼ hbK; bK0iFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hbK; bKiFhbK0; bK0iFq ¼ hbK; bK0iF

jjbKjjFjjbK0jjF : (5)

Above, h�; �iF denotes a Frobenius inner product, jj � jjF is a

Frobenius norm and A can be viewed as the cosine of the angle,

correlation, defined between two matrices. Kernel mixture weights

l ¼ l1; . . . ;lPð Þ are determined by maximizing the centered align-

ment between the final combined kernel Kl and the response kernel

Ky (Cortes et al., 2012):

max
l

A bKl; bKy

� �
¼ max

l

hbKl;KyiF
jjbKljjF

;

subject to : jjljj2 ¼ 1; l � 0:

(6)

In (6), jjbKyjjF is omitted because it does not depend on l, and

hbKl; bKyiF ¼ hbKl;KyiF through the properties of centering. The opti-

mization problem (6) can be solved via:

min
v�0

vTMv� 2vTa; (7)

with the vector a and the symmetric matrix M defined by:

að Þi ¼ hbK ið Þ
;KyiF; i ¼ 1; . . . ;P; (8)

Mð Þij ¼ hbK ið Þ
; bK jð Þ

iF; i; j ¼ 1; . . . ;P: (9)

Optimal kernel weights are given by l� ¼ v�=jjv�jj, where v� is the

solution to (7). Then, the combined kernel Kl is calculated with

Equation (4) and used to train a kernel-based prediction algorithm

(Cortes et al., 2012).

Such centered kernel alignment-based strategy has proved to

have a good predictive performance (Brouard et al., 2016; Cortes

et al., 2012; Kludas et al., 2016; Shen et al., 2014), but it is not ap-

plicable to most of the pairwise learning problems because the size

of pairwise kernel matrices, K 1ð Þ; . . . ;K Pð Þ, grows very quickly with

the number of drugs and cell lines (Supplementary Fig. S1) making

the mixture weights optimization procedure computationally in-

tractable even for small number of inputs (Table 1).

For instance, given 10 kernels for 100 drugs and 10 kernels for 100

cell lines (P ¼ 10� 10 ¼ 100, N ¼ 100� 100 ¼ 10 000 assuming

that bioactivities of all combinations of drugs and cell lines are known),

the computation of the matrix M requires Pþ1ð ÞP
2 ¼ 5 050 evaluations

of Frobenius products between pairwise kernels composed of 100

million entries each, and additional 100 evaluations to calculate vector

a (the number of evaluations increases when applying a cross valid-

ation). Given 200 drugs and 200 cell lines, the size of a single pairwise

kernel grows to 1.6 billion entries taking roughly 12 GB memory. For

comparison, in case of a more standard learning problem, such as drug

response prediction in a single cancer cell line using drug features only,

there would be 200 drugs as inputs instead of drug–cell line pairs, and

the resulting kernel matrix would be composed of 40 000 elements tak-

ing 0.32 MB memory.

2.2 pairwiseMKL
2.2.1 Stage 1: optimization of pairwise kernel weights

In this work, we devise an efficient procedure for optimizing kernel

weights in pairwise learning setting. Specifically, we exploit the

known identity

hKd � Kc;K
0
d � K0ci ¼ hKd;K

0
dihKc;K

0
ci (10)

to avoid explicit computation of the massive Kronecker product

matrices in Equations (8) and (9). The main difficulty comes from

the centering of the pairwise kernel; in particular, the fact that one

cannot obtain a centered pairwise kernel bK simply by computing the

Kronecker product of centered drug kernel bKd and cell line kernelbKc, i.e. bK 6¼ bKd � bKc.

In order to address this limitation, we introduce here a new,

highly efficient Kronecker decomposition of the centering operator

for the pairwise kernel:

C ¼
X2

q¼1

Q
qð Þ

d
�Q qð Þ

c ; (11)

where Qd
qð Þ 2 Rnd�nd and Qc

qð Þ 2 Rnc�nc are the factors of C.

Exploiting the structure of C allows us to compute the factors effi-

ciently by solving the singular value problem for a matrix of size

2�2 only, regardless of how large N is (the detailed procedure is

provided in Supplementary Material).

Table 1. Memory and time needed for a naı̈ve MKL approach expli-

citly computing pairwise kernels (Section 2.1) and pairwiseMKL

(Section 2.2), depending on the number of drugs and cell lines

used in the drug bioactivity prediction experiment

Number

of drugs

Number

of cell

lines

Memory (GB) Time (h)

Naı̈ve

approach

pairwiseMKL Naı̈ve

approach

pairwiseMKL

50 50 9.810 0.001 2.976 0.003

60 60 20.290 0.001 7.797 0.005

70 70 37.750 0.043 17.678 0.057

80 80 64.000 0.044 37.691 0.069

90 90 103.180 0.046 77.408 0.087

100 100 156.890 0.048 145.312 0.106

110 110 229.670 0.050 >168.000a 0.118

120 120 >256.000b 0.053 	168.000 0.123

Note: A single round of 10-fold CV was run using different-sized subsets of

the data on anticancer drug responses (described in Section 2.3.1) with 10

drug kernels and 12 cell line kernels. Regularization hyperparameter k was set

to 0.1 in both methods.
aProgram did not complete within 7 days (168 h).
bProgram did not run given 256 GB of memory.
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Decomposition (11) allows us to greatly simplify the calculation

of the matrix M and vector a needed in the kernel mixture weights

optimization by (7):

Mð Þij ¼ hbK ið Þ
; bK jð Þ

iF ¼ tr CK ið ÞCCK jð ÞC
� �

¼
X2

q¼1

X2

r¼1

tr Q
qð Þ

d
K

ið Þ
d

Q
rð Þ

d
K

jð Þ
d

� �
tr Q qð Þ

c K ið Þ
c Q rð Þ

c K jð Þ
c

� �
;

(12)

with tr �ð Þ denoting a trace of a matrix (a full derivation is given in

Supplementary Material). Hence, the inner product in the massive

pairwise space (N�N) is reduced to a sum of inner products in the

original much smaller spaces of drugs (nd � nd) and cell lines

(nc � nc). The computation of the elements of a is simplified to the

inner product between two vectors by first exploiting the block

structure of the Kronecker product matrix through the identity

A� Bð Þvec Dð Þ ¼ vec BDAT
� �

:

hK ið Þ;KyiF ¼
D

K
ið Þ

d
� K ið Þ

c

� �
; yyT

E
F

¼
D

y; K
ið Þ

d
� K ið Þ

c

� �
y
E

¼
D

y; vec K ið Þ
c YK

ið Þ
d

� �E
;

(13)

and then accounting for the centering:

að Þi ¼ hbK ið Þ
;KyiF ¼ hy; hi;

h ¼
X2

q¼1

X2

r¼1

vec Q qð Þ
c K ið Þ

c Q rð Þ
c

� �
Y Q

qð Þ
d K

ið Þ
d Q

rð Þ
d

� �� �
;

(14)

where Y 2 Rnc�nd is the label matrix (if N < nc � nd, missing val-

ues in Y are imputed with column (drug) averages to calculate a),

and vec �ð Þ is the vectorization operator which arranges the columns

of a matrix into a vector, vec Yð Þ ¼ y.

Gaussian response kernel. The standard linear response kernel yyT

used in Equations (13) and (14) is well-suited for measuring similarities

between labels in classification tasks, where y 2 f�1;þ1g, but not re-

gression, where y 2 R. pairwiseMKL therefore employs a Gaussian re-

sponse kernel, a gold standard for measuring similarities between real

numbers (Shawe-Taylor and Cristianini, 2004). In particular, we first rep-

resent each label value yi; i ¼ 1; . . . ;N; with a feature vector of length S

which is a histogram corresponding to a probability density function of

all the labels y, centered at yi, and stored as row vector in the matrix

W 2 RN�S. Then, the Gaussian response kernel compares the feature

vectors of all pairs of labels by calculating a sum of S inner products:

Ky ¼
XS

s¼1

w sð Þw sð ÞT ; (15)

where w sð Þ 2 RN is a column vector of W.

By replacing the linear response kernel yyT in Equations (13) and

(14) with the Gaussian response kernel defined in Equation (15),

vector a in regression setting is calculated as a sum of S inner prod-

ucts between two vectors:

að Þi ¼ hbK ið Þ
;KyiF ¼

XS

s¼1

hw sð Þ; wi;

w ¼
X2

q¼1

X2

r¼1

vec Q qð Þ
c K ið Þ

c Q rð Þ
c

� �
Z Q

qð Þ
d

K
ið Þ

d
Q

rð Þ
d

� �� �
;

(16)

where Z 2 Rnc�nd , vec Zð Þ ¼ w sð Þ [Z is analogous to Y in Equations

(13) and (14)]. We used S¼100 in our experiments.

Taken together, pairwiseMKL determines pairwise kernel mix-

ture weights l efficiently through (7) with the matrix M and vector

a constructed by (12) and (16), respectively, without explicit calcula-

tion of massive pairwise matrices.

2.2.2 Stage 2: pairwise model training

Given pairwise kernel weights l, Equation (3) of pairwise KRR has

the following form:

l1K
1ð Þ

d
� K 1ð Þ

c þ; . . . ;þlPK
Pð Þ

d
� K Pð Þ

c þ kI
� �

a ¼ y: (17)

Since the bioactivities of all combinations of drugs and cell lines

might not be known, meaning that there might be missing values in

the label matrix Y 2 Rnc�nd , vec Yð Þ ¼ y, we further get

Ua ¼ y;

U ¼ B l1K
1ð Þ

d
� K 1ð Þ

c þ; . . . ;þlPK
Pð Þ

d
�K Pð Þ

c þ kI
� �

BT ;
(18)

where B is an indexing matrix denoting the correspondences between

the rows and columns of the kernel matrix and the elements of the vec-

tor a: Bi‘ ¼ 1 denotes that the coefficient ai corresponds to the ‘th

row/column in the kernel matrix. Training the model, i.e. finding the

parameters a of the pairwise prediction function, is equivalent to solv-

ing the above system of linear equations (18). We solve the system

with the conjugate gradient (CG) approach that iteratively improves

the result by carrying out matrix-vector products between U and a,

which in general requires a number of iterations proportional to the

number of data. However, in practise one usually obtains as good or

even better predictive performance with only a few iterations.

Restricting the number of iterations acts as an additional regularization

mechanism known in the literature as early stopping (Engl et al, 1996).

We further accelerate the matrix-vector product Ua by taking ad-

vantage of the structural properties of the matrix U. In (Airola and

Pahikkala, 2017), we introduced the generalized vec-trick algorithm

that carries out matrix–vector multiplications between a principal sub-

matrix of a Kronecker product of type B K
1ð Þ

d
�K 1ð Þ

c

� �
BT and a vector

a in O Nnd þNncð Þ time, without explicit calculation of pairwise kernel

matrices. Here, we extend the algorithm to work with sums of multiple

pairwise kernels, i.e. to solve the system of equations (18). In particular,

the matrix U is a sum of P submatrices of type B K
1ð Þ

d
� K 1ð Þ

c

� �
BT , and

hence each iteration of CG is carried out in O PNnd þ PNncð Þ time (see

Supplementary Material for pseudocode and more details).

In summary, our pairwiseMKL avoids explicit computation of

any pairwise matrices in both stages of finding pairwise kernel

weights and pairwise model training, which makes the method suit-

able for solving problems in large pairwise spaces, such as in case of

drug bioactivity prediction (Table 1).

2.3 Dataset
2.3.1 Drug bioactivity data

Drug responses in cancer cell lines. In order to test our framework,

we used anticancer drug response data from GDSC project initiated

by Wellcome Trust Sanger Institute (release June 2014, Yang et al.,

2012). Our dataset consists of 124 drugs and 124 human cancer cell

lines, for which complete 124� 124 ¼ 15 376 drug sensitivity

measurements are available in the form of ln(IC50) values in nano-

molars (Ammad-ud-din et al., 2016).
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Drug–protein binding affinities. In the second task of drug–protein

binding affinity prediction, we used a comprehensive kinome-wide

drug–target interaction map generated by Merget et al. (2017) from

publicly available data sources, and further updated with the bioac-

tivities from version 22 of ChEMBL database by Sorgenfrei et al.

(2017). Since the original interaction map is extremely sparse, we

selected drugs with at least 1% of measured bioactivity values across

the kinase panel, and also kinases with kinase domain and ATP

binding pocket amino acid sub-sequences available in PROSITE

(Sigrist et al., 2013), resulting in 2967 drugs, 226 protein kinases,

and 167 995 binding affinities between them in the form of

�log10(IC50) values in molars.

We computed drug kernels, cell line kernels and protein

kernels as described in the following sections and summarized in

Figure 2c.

2.3.2 Kernels

Drug kernels. For drug compounds, we computed Tanimoto kernels

using 10 different molecular fingerprints (Fig. 2c), i.e. binary vectors

representing the presence or absence of different substructures in the

molecule, obtained with rcdk R package (Guha, 2007): kd xd; x
0
d

� �
¼

Hxd ;x
0
d
= Hxd

þHx0
d
�Hxd ;x

0
d

� �
; where Hxd

is the number of 1-bits in

the drug’s fingerprint xd, and Hxd ;x
0
d

indicates the number of 1-bits

common to fingerprints of two drug molecules xd and x0d under com-

parison. The above Tanimoto similarity measure is a valid PSD ker-

nel function (Gower, 1971).

Cell line kernels. For cell lines, we calculated Gaussian kernels kc

xc; x
0
c

� �
¼ ¼ exp �jjxc � x0cjj

2=2r2
c

� �
, where xc and x0c denote fea-

ture representation of two cell lines in the form of (i) gene expression

signature, (ii) methylation pattern, (iii) copy number variation or

Fig. 2. Pairwise kernel mixture weights obtained with pairwiseMKL and KronRLS-MKL (average across 10 outer CV folds) in the task of (a) drug response in cancer

cell line prediction and (b) drug–protein binding affinity prediction (note: KronRLS-MKL did not execute with 1 TB memory); only the weights different from 0 are

shown. KronRLS-MKL finds separate weights for drug kernels and cell line (protein) kernels instead of pairwise kernels. Numbers at the end of kernel names indi-

cate the kernel hyperparameter values, in particular (i) kernel width hyperparameter in case of Gaussian kernels (e.g. Kc-cn-146 with rc ¼ 146), and (ii) maximum

sub-string length L, r1 controlling for the shifting contribution term and r2 controlling for the amino acid similarity term in case of GS kernels (e.g. Kp-GS-atp-5-4-

4 with L ¼ 5; r1 ¼ r2 ¼ 4, see Section 2.3.2 for details). (c) Summary of drug, cell line and protein kernels used in this work for the two prediction problems.
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(iv) somatic mutation profile (details given in Figure 2c and

Supplementary Material); rc indicates a kernel width hyperpara-

meter. We derived real-valued mutation profile feature vectors, in-

stead of employing commonly used binary mutation indicators. In

particular, each element xci
; i ¼ 1; . . . ;M, corresponds to one of M

mutations. If a cell line represented by xc has a negative ith mutation

status, then xci
¼ 0; otherwise, xci

indicates a negative logarithm of

the proportion of all cell lines with positive mutation status. This

way, xci
is high for a mutation specific to a cell line represented by

xc, giving more importance to such genetic variant.

Protein kernels. For proteins, we computed Gaussian kernels based

on real-valued gene ontology (GO) annotation profiles, as well as

Smith–Waterman (SW) kernels and generic string (GS) kernels based

on three types of amino acid sequences: (i) full kinase sequences, (ii)

kinase domain sub-sequences and (iii) ATP binding pocket sub-

sequences (Fig. 2c).

Gaussian GO-based kernels were calculated separately for mo-

lecular function, biological process and cellular component domains

as kp xp; x
0
p

� �
¼ exp �jjxp � x0pjj

2=2r2
p

� �
, where xp and x0p denote

GO profiles of two protein kinases. Each element of the GO profile

feature vector, xpi
; i ¼ 1; . . . ;G, corresponds to one of G GO terms

from a given domain. If a kinase represented by xp is not annotated

with term i, then xpi
¼ 0; otherwise, xpi

indicates a negative loga-

rithm of the proportion of all proteins annotated with term i.

SW kernel measures similarity between amino acid sequences xp and

x0p using normalized SW alignment score SW (Smith and Waterman,

1981): kpðxp;x
0
pÞ ¼ SWðxp; x

0
pÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW xp;xp

� �
SW x0p; x

0
p

� �r
. Although

SW kernel is commonly used in drug–protein interaction prediction, it is

not a valid PSD kernel function, and hence we examined all obtained

matrices. The matrix corresponding to ATP binding pocket sub-

sequences was not PSD, and therefore, we shrunk its off-diagonal entries

until we reached the PSD property (126 shrinkage iterations with the

shrinkage factor of 0.999 were needed for the matrix to become PSD).

There are other ways of finding the nearest PSD matrix, e.g. by setting

negative eigenvalues to 0, but we selected shrinkage since it smoothly

modifies the whole spectrum of eigenvalues.

Finally, GS kernel compares each sub-string of xp of size l � L

with each sub-string of x0p having the same length: kp xp;x
0
p

� �
¼PL

l¼1

Pjxp j�l
i¼0

Pjx0p j�l
j¼0 exp � i�jð Þ2

2r2
1

�
exp � jjn

l�n0l jj2
2r2

2

� ��
, where vector nl

contains properties of l amino acids included in the sub-string under

comparison (Giguère et al., 2013). Each comparison results in a

score that depends on the shifting contribution term (difference in

the position of two sub-strings in xp and x0p) controlled by r1, and

the similarity of amino acids included in two sub-strings, controlled

by r2. We used BLOSUM 50 matrix as amino acid descriptors in the

GS kernel and in the SW sequence alignments.

We computed each Gaussian kernel with three different values

of kernel width hyperparameter, determined by calculating pairwise

distances between all data points, and then selecting 0.1, 0.5 and

0.9 quantiles. In case of each GS kernel, we selected the potential val-

ues for its three hyperparameters L ¼ f5;10; 15; 20g; r1 ¼ f0:1;1;2;
3; 4g and r2 ¼ f0:1; 1;2;3; 4g by ensuring that the resulting kernel

matrices have a spectrum of different histograms of kernel values.

3 Results

To demonstrate the efficacy of pairwiseMKL for learning with

multiple pairwise kernels, we tested the method in two related

regression tasks of (i) prediction of anticancer efficacy of drug com-

pounds and (ii) prediction of target profiles of anticancer drug com-

pounds. In particular, we carried out a nested 10-fold cross

validation (CV; 10 outer folds, 3 inner folds) using 15 376 drug

responses in cancer cell lines and 167 995 drug–protein binding

affinities, as well as chemical and genomic information sources in

the form of kernels. We constructed a total of 120 pairwise drug–

cell line kernels from 10 drug kernels and 12 cell line kernels, and

3120 pairwise drug–protein kernels from 10 drug kernels and 312

protein kernels (Fig. 2c).

We compared the performance of pairwiseMKL against the re-

cently introduced algorithm for pairwise learning with multiple ker-

nels KronRLS-MKL (Nascimento et al., 2016). Both are regularized

least-squares models, but pairwiseMKL first determines the kernel

weights, and then optimizes the model parameters, whereas

KronRLS-MKL interleaves the optimization of the model parame-

ters with the optimization of kernel weights. Although KronRLS-

MKL was originally used for classification only, it is a regression

algorithm in its core, and with few modifications to the implementa-

tion (see Supplementary Material), we applied it here to quantitative

drug bioactivity prediction. We used the same CV folds for both

methods to ensure their fair comparison. We also conducted elastic

net regression with standard feature vectors instead of kernels (see

Supplementary Material).

Unlike pairwiseMKL, KronRLS-MKL assumes that bioactivities

of all combinations of drugs and cell lines (proteins) are known, i.e.

it does not allow for missing values in the label matrix storing drug–

cell line (drug–protein) bioactivities. Therefore, in the experiments

with KronRLS-MKL, we mean-imputed the originally missing bio-

activities, as well as bioactivities corresponding to drug–cell line

(drug–protein) pairs in the test folds. We assessed the predictive

power of the methods with root mean squared error (RMSE),

Pearson correlation and F1 score between original and predicted

bioactivity values.

We tuned the regularization hyperparameter k of pairwiseMKL

and regularization hyperparameters k and r of KronRLS-MKL with-

in the nested CV from the set f10�5;10�4; . . . ; 100g. Instead of tun-

ing the kernel hyperparameters in this standard way, we constructed

several kernels with different carefully selected hyperparameter val-

ues (see Section 2.3.2 for details).

3.1 Drug response in cancer cell line prediction
In the task of anticancer drug response prediction with 120 pairwise

kernels, pairwiseMKL provided accurate predictions, especially for

those drug–cell line pairs with more training data points (Fig. 3a). It

outperformed KronRLS-MKL in terms of predictive power, running

time and memory usage (Table 2 and Supplementary Fig. S2). In

particular, pairwiseMKL was almost 6 times faster and used 68-

times less memory. Even though both pairwiseMKL and KronRLS-

MKL achieved high Pearson correlation of 0.858 and 0.849, respect-

ively, the accuracy of predictions from KronRLS-MKL decreased

gradually when going away from the mean value to the tails of the

response distribution (Supplementary Fig. S2), as indicated by 13%

increase in RMSE and 40% decrease in F1 score when comparing to

pairwiseMKL (Table 2). These extreme responses are often the most

important cases to predict in practice, as they correspond to sensitiv-

ity or resistance of cancer cells to a particular drug treatment.

Importantly, pairwiseMKL returned a sparse combination of

only 11 out of 120 input pairwise kernels, whereas all kernel

weights from KronRLS-MKL are nearly uniformly distributed

(Fig. 2a). The final model generated by pairwiseMKL is much
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simpler due to fewer active kernels, and can therefore inform about

the predictive power of different chemical and genomic data sources.

Figure 2a shows that the pairwise kernel calculated using gene

expression in cancer cell lines and molecular fingerprint defined

by Klekota and Roth (2008) carries the greatest weight in the model.

Klekota-Roth fingerprint is the longest among the considered

ones, consisting of 4860 bits representing different substructures

in the chemical compound, and gene expression profiles have

previously been reported as most predictive of anticancer drug effi-

cacy (Costello et al., 2014). Other fingerprints identified by

pairwiseMKL as relevant for drug response inference include infor-

mation on Estate substructures (Hall and Kier, 1995), connectivity

and shortest paths between compound’s atoms. Among the cell line

kernels, the ones calculated using genetic mutation and methylation

patterns, in addition to gene expression, paired with the above-

mentioned fingerprint-based drug kernels, were selected for the con-

struction of the optimal pairwise kernel. Those information sources

can therefore be considered as complementing each other. The copy

number variation data did not prove effective in the prediction of

anticancer drug responses.

3.2 Drug–protein binding affinity prediction
In the larger experiment of prediction of target profiles of almost

3000 anticancer drug compounds, pairwiseMKL achieved again

high predictive performance (Pearson correlation of 0.883, RMSE

of 0.364, F1 score of 0.713; Fig. 3b). Notably, our method con-

structed the final model using only 8 out of 3120 pairwise kernels

(Fig. 2b). KronRLS-MKL did not execute given 1 TB memory,

whereas pairwiseMKL required just a fraction of that memory

(2.21 GB).

pairwiseMKL assigned the highest weights to two pairwise kernels

build upon amino acid sub-sequences of ATP binding pockets,

together with either shortest path fingerprints or extended connectiv-

ity fingerprints. A relatively high weight was given also to the

pairwise kernel constructed from Klekota-Roth fingerprints and sub-

sequences of kinase domains. In fact, kinase domain sequences in-

clude short sequences of ATP binding pockets, and capture also their

neighboring context. In all of the above selected pairwise kernels, pro-

tein sequences were compared using GS kernel. Our results therefore

suggest that ATP binding pockets are more informative than full

amino acid sequences, and that GS kernel is more powerful in captur-

ing similarities between amino acid sequences than a commonly used

protein kernel based on SW amino acid sequence alignments, at least

for the prediction of drug interactions with protein kinases investi-

gated. Finally, gene ontology profiles of proteins, in particular those

from biological process and cellular component domains, provided

also a modest contribution to the optimal pairwise kernel used for

drug–protein binding affinity prediction (Fig. 2b).

3.3 Kernel hyperparameters tuning
Our results demonstrate that pairwiseMKL provides also a useful

tool for tuning the kernel hyperparameters. In particular, we con-

structed each kernel with different hyperparameter values from a

carefully chosen range (see Section 2.3.2 for details), and the algo-

rithm then selected the optimal hyperparameters by assigning non-

zero mixture weights to corresponding kernels (Fig. 2). Notably,

pairwiseMKL always picked a single value for the Gaussian kernel

width hyperparameter, rc in case of cell line kernels and rp in case

of protein kernels. This is well-represented in Figure 2a where, for

each cell line data source, the weights are different from zero only in

one of the three rows of the heatmap. Furthermore, pairwiseMKL

selected also only a single out of 100 combinations of three values of

the hyperparameters (L,r1,r2) for the GS kernel (Fig. 2b).

4 Discussion

The enormous size of the chemical universe, estimated to consist of

up to 1024 molecules displaying good pharmacological properties

(Reymond and Awale, 2012), makes the experimental bioactivity

profiling of the full drug-like compound space infeasible in practice,

and therefore calls for efficient in silico approaches that could aid

various stages of drug development process and identification of op-

timal therapeutic strategies (Azuaje, 2017; Cheng et al., 2012;

Cichonska et al., 2015). Especially kernel-based methods have

proved good performance in many applications, including inference

of drug responses in cancer cell lines (Costello et al., 2014) and

elucidation of drug MoA through drug–protein binding affinity pre-

dictions (Cichonska et al., 2017). Pairwise learning is a natural ap-

proach for solving such problems involving pairs of objects, and the

benefits from integrating multiple chemical and genomic informa-

tion sources into clinically actionable prediction models are well-

reported in the recent literature (Cheng and Zhao, 2014; Costello

et al., 2014; Ebrahim et al., 2016).

To tackle the computational limitations of the current MKL

approaches, we introduced here pairwiseMKL, a new framework

for time- and memory-efficient learning with multiple pairwise ker-

nels. pairwiseMKL is well-suited for massive pairwise spaces, owing

to our novel, highly efficient formulation of Kronecker decompos-

ition of the centering operator for the pairwise kernel, and a fast

Table 2. Prediction performance, memory usage and running time

of pairwiseMKL and KronRLS-MKL methods in the task of drug re-

sponse in cancer cell line prediction.

Anticancer drug

response prediction

RMSE rPearson F1 score Memory

(GB)

Time (h)

pairwiseMKL 1.682 0.858 0.630 0.057 1.45

KronRLS-MKL 1.899 0.849 0.378 3.890 8.42

Performance measures were averaged over 10 outer CV folds. F1 score was

calculated using the threshold of ln(IC50)¼5 nM.

Fig. 3. Prediction performance of pairwiseMKL in the tasks of (a) drug re-

sponse in cancer cell line prediction and (b) drug–protein binding affinity pre-

diction. Scatter plots between original and predicted bioactivity values across

(a) 15 376 drug–cell line pairs and (b) 167 995 drug–protein pairs. Performance

measures were averaged over 10 outer CV folds. F1 score was calculated

using the threshold of (a) ln(IC50)¼5 nM, (b) �log10(IC50)¼7 M, both corre-

sponding to low drug concentration of roughly 100 nM, i.e. relatively stringent

potency threshold (red dotted lines). Color coding indicates the number of

training data points, i.e. drug–cell line (respectively drug–protein) pairs

including the same drug or cell line (drug or protein) as the test data point.
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method for training a regularized least-squares model with a

weighted combination of multiple kernels. To illustrate our

approach, we applied pairwiseMKL to two important problems

in computational drug discovery: (i) the inference of anticancer

potential of drug compounds and (ii) the inference of drug–

protein interactions using up to 167 995 bioactivities and 3120 kernels.

pairwiseMKL integrates heterogeneous data types into a single

model which is a sparse combination of input kernels, thus allowing

to characterize the predictive power of different information sources

and data representations by analyzing learned kernel mixture

weights. For instance, our results demonstrate that among the gen-

omic views, gene expression, followed by genetic mutation and

methylation patterns contributed mostly to the final pairwise kernel

adopted for anticancer drug response prediction (Fig. 2a). Although

methylation plays an essential role in the regulation of gene expres-

sion, typically repressing the gene transcription, the association be-

tween these two processes remains incompletely understood

(Wagner et al., 2014). Therefore, it can be hypothesized that these

genomic and epigenetic information levels are indeed complement-

ing each other in the task of drug response modeling.

In case of prediction of target profiles of anticancer drugs, we

observed the highest contribution to the final pairwise model from

Tanimoto drug kernels, coupled with GS protein kernels applied to

ATP binding pockets (Fig. 2b). This could be explained by the fact

that majority of anticancer drugs, including those considered in this

work, are kinase inhibitors designed to bind to ATP binding pockets

of protein kinases, and therefore constructing kernels from short

sequences of these pockets is more meaningful in the context of

drug-kinase binding affinity prediction compared to using full pro-

tein sequences. Moreover, GS kernel is more advanced than the

commonly used SW kernel as it compares protein sequences includ-

ing properties of amino acids. GS kernel also enables to match short

sub-sequences of two proteins even if their positions in the input

sequences differ notably. In both prediction problems, pairwiseMKL

was able to tune kernel hyperparameters by selecting a single kernel

out of several kernels with different hyperparameter values (Fig. 2).

It has been noted by Cortes et al. (2012) in the context of ALIGNF

algorithm that sparse kernel weight vector is a consequence of the

constraint l � 0 in the kernel alignment maximization (Equation 6).

This has been observed empirically in other works as well (e.g.

Brouard et al., 2016; Shen et al., 2014). In particular, it appears that

pairwiseMKL and ALIGNF, given a set of closely related kernels,

such as those calculated using the same data source and kernel func-

tion but different hyperparameters, tend to select a representative

kernel for the group to the optimized kernel mixture.

We compared the performance of pairwiseMKL to recently

introduced method for pairwise learning with multiple kernels

KronRLS-MKL. pairwiseMKL outperformed KronRLS-MKL in

terms of predictive power, running time and memory usage (Table 2

and Supplementary Fig. S2). Unlike pairwiseMKL, KronRLS-MKL

does not consider optimizing pairwise kernel weights, i.e. it finds

separate weights for drug kernels and cell line (protein) kernels

(Fig. 2a), and therefore it does not fully exploit the information con-

tained in the pairwise space. The reduced predictive performance of

KronRLS-MKL can be also attributed to the fact that it does not

allow for any missing values in the label matrix storing bioactivities

between drugs and cell lines (proteins), which need to be imputed as

a pre-processing step and included in the model training. KronRLS-

MKL has two regularization hyperparameters that need to be tuned,

hence lengthening the training time. Furthermore, determining the

parameters of the pairwise prediction function involves a computa-

tion of large matrices, which requires significant amount of memory

that grows quickly with the number of drugs and cell lines (pro-

teins). Finally, KronRLS-MKL applies L2 regularization on the ker-

nel weights, thus not enforcing sparse kernel selection. In fact,

KronRLS-MKL returned a nearly uniform combination of input ker-

nels, not allowing for the interpretation of the predictive power of

different data sources.

We tested pairwiseMKL using CV on the level of drug–cell line

(drug–protein) pairs which corresponds to evaluating the perform-

ance of the method in the task of filling experimental gaps in bio-

activity profiling studies. However, pairwiseMKL could also be

applied, e.g. to the inference of anticancer potential of a new candi-

date drug compound or prediction of sensitivity of a new cell line to

a set of drugs. We plan to tackle these important problems in the fu-

ture work.

In this work, we put an emphasis on the regression task, since

drug bioactivity measurements have a real-valued nature, but we

also implemented an analogous method for solving the classification

problems with support vector machine. Other potential applications

of our efficient Kronecker decomposition of the centering operator

for the pairwise kernel include methods which involve kernel center-

ing in the pairwise space, such as pairwise kernel PCA. Finally, even

though we focused here on the problems of anticancer drug response

prediction and drug–target interaction prediction, pairwiseMKL

has wide applications outside this field, such as in the inference of

protein–protein interactions, binding affinities between proteins and

peptides or mRNAs and miRNAs.
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