51 research outputs found
Resonant demagnetization of a dipolar BEC in a 3D optical lattice
We study dipolar relaxation of a chromium BEC loaded into a 3D optical
lattice. We observe dipolar relaxation resonances when the magnetic energy
released during the inelastic collision matches an excitation towards higher
energy bands. A spectroscopy of these resonances for two orientations of the
magnetic field provides a 3D band spectroscopy of the lattice. The narrowest
resonance is registered for the lowest excitation energy. Its line-shape is
sensitive to the on-site interaction energy. We use such sensitivity to probe
number squeezing in a Mott insulator, and we reveal the production of
three-body states with entangled spin and orbital degrees of freedom.Comment: 5 pages, 3 Figures, Supplemental Materia
Entanglement of two individual atoms using the Rydberg blockade
We report on our recent progress on the manipulation of single rubidium atoms
trapped in optical tweezers and the generation of entanglement between two
atoms, each individually trapped in neighboring tweezers. To create an
entangled state of two atoms in their ground states, we make use of the Rydberg
blockade mechanism. The degree of entanglement is measured using global
rotations of the internal states of both atoms. Such internal state rotations
on a single atom are demonstrated with a high fidelity.Comment: Proceeding of the 19th International Conference on Laser Spectroscopy
ICOLS 2009, 7-13 June 2009, Hokkaido, Japa
Ion detection in the photoionization of a Rb Bose-Einstein condensate
Two-photon ionization of Rubidium atoms in a magneto-optical trap and a
Bose-Einstein condensate (BEC) is experimentally investigated. Using 100 ns
laser pulses, we detect single ions photoionized from the condenstate with a
35(10)% efficiency. The measurements are performed using a quartz cell with
external electrodes, allowing large optical access for BECs and optical
lattices.Comment: 14 pages, 7 figure
Controlling the quantum stereodynamics of ultracold bimolecular reactions
Chemical reaction rates often depend strongly on stereodynamics, namely the
orientation and movement of molecules in three-dimensional space. An ultracold
molecular gas, with a temperature below 1 uK, provides a highly unusual regime
for chemistry, where polar molecules can easily be oriented using an external
electric field and where, moreover, the motion of two colliding molecules is
strictly quantized. Recently, atom-exchange reactions were observed in a
trapped ultracold gas of KRb molecules. In an external electric field, these
exothermic and barrierless bimolecular reactions, KRb+KRb -> K2+Rb2, occur at a
rate that rises steeply with increasing dipole moment. Here we show that the
quantum stereodynamics of the ultracold collisions can be exploited to suppress
the bimolecular chemical reaction rate by nearly two orders of magnitude. We
use an optical lattice trap to confine the fermionic polar molecules in a
quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along
the tight confinement direction. With the combination of sufficiently tight
confinement and Fermi statistics of the molecules, two polar molecules can
approach each other only in a "side-by-side" collision, where the chemical
reaction rate is suppressed by the repulsive dipole-dipole interaction. We show
that the suppression of the bimolecular reaction rate requires quantum-state
control of both the internal and external degrees of freedom of the molecules.
The suppression of chemical reactions for polar molecules in a
quasi-two-dimensional trap opens the way for investigation of a dipolar
molecular quantum gas. Because of the strong, long-range character of the
dipole-dipole interactions, such a gas brings fundamentally new abilities to
quantum-gas-based studies of strongly correlated many-body physics, where
quantum phase transitions and new states of matter can emerge.Comment: 19 pages, 4 figure
Kinetic Monte Carlo modelling of dipole blockade in Rydberg excitation experiment
We present a method to model the interaction and the dynamics of atoms
excited to Rydberg states. We show a way to solve the optical Bloch equations
for laser excitation of the frozen gas in good agreement with the experiment. A
second method, the Kinetic Monte Carlo method gives an exact solution of rate
equations. Using a simple N-body integrator (Verlet), we are able to describe
dynamical processes in space and time. Unlike more sophisticated methods, the
Kinetic Monte Carlo simulation offers the possibility of numerically following
the evolution of tens of thousands of atoms within a reasonable computation
time. The Kinetic Monte Carlo simulation gives good agreement with
dipole-blockade type of experiment. The role of ions and the individual
particle effects are investigated.Comment: 23 pages. Submitted to New Journal of Physic
- âŠ