72 research outputs found
Degree of Sequentiality of Weighted Automata
Weighted automata (WA) are an important formalism to describe quantitative properties. Obtaining equivalent deterministic machines is a longstanding research problem. In this paper we consider WA with a set semantics, meaning that the semantics is given by the set of weights of accepting runs. We focus on multi-sequential WA that are defined as finite unions of sequential WA. The problem we address is to minimize the size of this union. We call this minimum the degree of sequentiality of (the relation realized by) the WA.
For a given positive integer k, we provide multiple characterizations of relations realized by a union of k sequential WA over an infinitary finitely generated group: a Lipschitz-like machine independent property, a pattern on the automaton (a new twinning property) and a subclass of cost register automata. When possible, we effectively translate a WA into an equivalent union of k sequential WA. We also provide a decision procedure for our twinning property for commutative computable groups thus allowing to compute the degree of sequentiality. Last, we show that these results also hold for word transducers and that the associated decision problem is PSPACE
-complete
Graph Spectral Properties of Deterministic Finite Automata
We prove that a minimal automaton has a minimal adjacency matrix rank and a
minimal adjacency matrix nullity using equitable partition (from graph spectra
theory) and Nerode partition (from automata theory). This result naturally
introduces the notion of matrix rank into a regular language L, the minimal
adjacency matrix rank of a deterministic automaton that recognises L. We then
define and focus on rank-one languages: the class of languages for which the
rank of minimal automaton is one. We also define the expanded canonical
automaton of a rank-one language.Comment: This paper has been accepted at the following conference: 18th
International Conference on Developments in Language Theory (DLT 2014),
August 26 - 29, 2014, Ekaterinburg, Russi
The monoid of queue actions
We investigate the monoid of transformations that are induced by sequences of
writing to and reading from a queue storage. We describe this monoid by means
of a confluent and terminating semi-Thue system and study some of its basic
algebraic properties, e.g., conjugacy. Moreover, we show that while several
properties concerning its rational subsets are undecidable, their uniform
membership problem is NL-complete. Furthermore, we present an algebraic
characterization of this monoid's recognizable subsets. Finally, we prove that
it is not Thurston-automatic
Unambiguous 1-Uniform Morphisms
A morphism h is unambiguous with respect to a word w if there is no other
morphism g that maps w to the same image as h. In the present paper we study
the question of whether, for any given word, there exists an unambiguous
1-uniform morphism, i.e., a morphism that maps every letter in the word to an
image of length 1.Comment: In Proceedings WORDS 2011, arXiv:1108.341
Self-verifying cellular automata
We study the computational capacity of self-verifying cellular automata with an emphasis on one-way information flow (SVOCA). A self-verifying device is a nondeterministic device whose nondeterminism is symmetric in the following sense. Each computation path can give one of the answers "yes", "no", or "do not know". For every input word, at least one computation path must give either the answer "yes" or "no", and the answers given must not be contradictory. We show that realtime SVOCA are strictly more powerful than realtime deterministic one-way cellular automata, since they can accept non-semilinear unary languages. It turns out that SVOCA can strongly be sped-up from lineartime to realtime. They are even capable to simulate any lineartime computation of deterministic two-way cellular automata. Closure properties and decidability problems are considered as well
Weak Solutions to the Stationary Incompressible Euler Equations
We consider weak stationary solutions to the incompressible Euler equations
and show that the analogue of the h-principle obtained in [5, 7] for
time-dependent weak solutions continues to hold. The key difference arises in
dimension d = 2, where it turns out that the relaxation is strictly smaller
than what one obtains in the time-dependent case.Comment: 16 pages, 2 figures. Corrected a mistake in the proof of Theorem 17.
Results unchanged. Corrected a typographical erro
Trees over Infinite Structures and Path Logics with Synchronization
We provide decidability and undecidability results on the model-checking
problem for infinite tree structures. These tree structures are built from
sequences of elements of infinite relational structures. More precisely, we
deal with the tree iteration of a relational structure M in the sense of
Shelah-Stupp. In contrast to classical results where model-checking is shown
decidable for MSO-logic, we show decidability of the tree model-checking
problem for logics that allow only path quantifiers and chain quantifiers
(where chains are subsets of paths), as they appear in branching time logics;
however, at the same time the tree is enriched by the equal-level relation
(which holds between vertices u, v if they are on the same tree level). We
separate cleanly the tree logic from the logic used for expressing properties
of the underlying structure M. We illustrate the scope of the decidability
results by showing that two slight extensions of the framework lead to
undecidability. In particular, this applies to the (stronger) tree iteration in
the sense of Muchnik-Walukiewicz.Comment: In Proceedings INFINITY 2011, arXiv:1111.267
Bounded Languages Meet Cellular Automata with Sparse Communication
Cellular automata are one-dimensional arrays of interconnected interacting
finite automata. We investigate one of the weakest classes, the real-time
one-way cellular automata, and impose an additional restriction on their
inter-cell communication by bounding the number of allowed uses of the links
between cells. Moreover, we consider the devices as acceptors for bounded
languages in order to explore the borderline at which non-trivial decidability
problems of cellular automata classes become decidable. It is shown that even
devices with drastically reduced communication, that is, each two neighboring
cells may communicate only constantly often, accept bounded languages that are
not semilinear. If the number of communications is at least logarithmic in the
length of the input, several problems are undecidable. The same result is
obtained for classes where the total number of communications during a
computation is linearly bounded
Testing real-time systems using TINA
The paper presents a technique for model-based black-box conformance testing of real-time systems using the Time Petri Net Analyzer TINA. Such test suites are derived from a prioritized time Petri net composed of two concurrent sub-nets specifying respectively the expected behaviour of the system under test and its environment.We describe how the toolbox TINA has been extended to support automatic generation of time-optimal test suites. The result is optimal in the sense that the set of test cases in the test suite have the shortest possible accumulated time to be executed. Input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases selection is based either on using manually formulated test purposes or automatically from various coverage criteria specifying structural criteria of the model to be fulfilled by the test suite. We discuss how test purposes and coverage criterion are specified in the linear temporal logic SE-LTL, derive test sequences, and assign verdicts
- âŠ