989 research outputs found

    Planning the forest transport systems based on the principles of sustainable development of territories

    Get PDF
    The article identifies a new method of dynamic modeling in the design of the transport system in the forest fund (TSFF), which is based on economic and mathematical modeling and fuzzy logic tools. The combination of the indicated methods is designed to reduce the disadvantages of their use and increase the benefits. The article substantiates the choice of assessing the forecast level of the impact of risks on the activities of forestry enterprises (the method of expert assessments), using the methodological tools of fuzzy logic. The indicated method makes it possible to take into account a large variety of risk factors of the internal and external environment. At the same time, methodological aspects of fuzzy logic make it possible to formulate a quantitative assessment of qualitative indicators. The article substantiates the choice of tools for economic and mathematical modeling in order to state the design problem of the planned TSFF. Since the indicated method enables the formalization of the functioning of the timber transport system in the given conditions. The article presents a developed model that correctly takes into account the influence of risk factors when planning a TSFF, through the combination of fuzzy logic methods and economic and mathematical modeling. The advantages of the developed model include: considering the multivariance of material flows, vehicles, points of overload, etc.; automated processing of input parameters and effective data; using the model for forecasting, i.e. the possibility of deriving a fuzzy estimate of the efficiency of the timber transport system by identifying cause-effect relationships between the modeling object and the influence of risk factors on its functioning. Β© 2019 IOP Publishing Ltd

    ВивчСння Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π΅Ρ‚ΠΈΠ»-1H-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4(3H)-ΠΎΠ½ 2,2-діоксиду Π· ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Π½Ρ–Ρ‚Ρ€ΠΈΠ»Π°ΠΌΠΈ Ρ‚Π° Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Π°ΠΌΠΈ

    Get PDF
    Some peculiarities of the three-component interaction of 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide with active methylene nitriles and heterylcarbaldehydes have been described in this article. It has been found that ifΒ malononitrile is used, the products of the three-component reaction are 2-amino-4-heteryl-3-cyano-6-ethyl-4,6-dihydropyrano[3,2-c][2,1]benzothiazine 5,5-dioxides irrespective of the heteryl fragment nature in the initial aldehyde. When using ethyl cyanoacetate (as the active methylene nitrile) in the three-component interaction insteadΒ malononitrile the reaction lost its selectivity. In this case, depending on the heterylcarbaldehyde, three differentΒ types of products were obtained, namely 2-amino-3-alkoxycarbonyl-4-heteryl-4H-pyranes (for pyridine-3-, pyridine-4-carbaldehydes and furan-2-carbaldehyde), thriethylammonium salt of bis(1-ethyl-1H-2,1-benzothiazin-2,2-Β dioxo-4-ol-3-yl)(2-thienyl)methane (for thiophen-2-carbaldehyde) or ethyl 2-cyano-3-(1H-indol-3-yl)acrylate (forΒ indol-3-carbaldehyde). Formation of a stable triethylammonium salts was considered as the process competitiveΒ with formation of 2-amino-4H-pyranes. It has allowes to propose the modiΕΈed mechanism of 2-amino-4H-pyranesΒ formation. This mechanism includes the stage of forming triethylammonium salts of bis-adducts. According toΒ this mechanism 2-amino-3-ethoxycarbonyl-4-(2-thienyl)-4H-pyrane without any impurity of bis-adduct could beΒ selectively obtained using the three-component interaction. Triethylammonium salts of bis-adducts were obtained by direct interaction of 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide with heterylcarbaldehydes in theΒ presence of equimolar amounts of triethylamine. It has been shown that the three-component interaction of Β 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide with active methylene nitriles and heterylcarbaldehydes is a more Β effective tool in order to obtain condensed 2-amino-4-heteryl-4H-pyranes compared to the stepwise approach.ΠžΠΏΠΈΡΠ°Π½Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ особСнности Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ взаимодСйствия 1-этил-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½ 2,2-диоксида с ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π½ΠΈΡ‚Ρ€ΠΈΠ»Π°ΠΌΠΈ ΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ. УстановлСно, Ρ‡Ρ‚ΠΎ Π² случаС использования ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌΠΈ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ взаимодСйствия Π±Ρ‹Π»ΠΈ 2-Π°ΠΌΠΈΠ½ΠΎ-4-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»-3-Ρ†ΠΈΠ°Π½ΠΎ-6-этил-4,6-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΠΏΠΈΡ€Π°Π½ΠΎ[3,2-c][2,1]Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½ 5,5-диоксиды нСзависимо ΠΎΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° Π² исходном альдСгидС. ΠŸΡ€ΠΈ использовании Π² Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠΌ взаимодСйствии вмСсто ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° этилцианоацСтата (Π² качСствС ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π½ΠΈΡ‚Ρ€ΠΈΠ»Π°) рСакция тСряСт свою ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π’ этом случаС Π² зависимости ΠΎΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π°Β Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Ρ‚Ρ€ΠΈ Ρ‚ΠΈΠΏΠ° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ², Π° ΠΈΠΌΠ΅Π½Π½ΠΎ 2-Π°ΠΌΠΈΠ½ΠΎ-3-алкоксикарбонил-4-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»-4Н-ΠΏΠΈΡ€Π°Π½Ρ‹ (для пиридин-3-, ΠΏΠΈΡ€ΠΈΠ΄ΠΈΠ½-4-ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄ΠΎΠ² ΠΈ Ρ„ΡƒΡ€Π°Π½-2-ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π°), триэтиламмониСвая соль бис(1-этил-1H-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-2,2-диоксо-4-ΠΎΠ»-3-ΠΈΠ»)(2-Ρ‚ΠΈΠ΅Π½ΠΈΠ»)ΠΌΠ΅Ρ‚Π°Π½Π° (для Ρ‚ΠΈΠΎΡ„Π΅Π½-2-ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π°) ΠΈΠ»ΠΈ этил2-Ρ†ΠΈΠ°Π½ΠΎ-3-(1H-ΠΈΠ½Π΄ΠΎΠ»-3-ΠΈΠ»)Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ (для ΠΈΠ½Π΄ΠΎΠ»-3-ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π°). ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ триэтиламмониСвых солСй симмСтричных бис-Π°Π΄Π΄ΡƒΠΊΡ‚ΠΎΠ² Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Π»ΠΎΡΡŒ ΠΊΠ°ΠΊ ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ 2-Π°ΠΌΠΈΠ½ΠΎ-4Н-ΠΏΠΈΡ€Π°Π½ΠΎΠ² процСсс. Π­Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ формирования 2-Π°ΠΌΠΈΠ½ΠΎ-4Н-ΠΏΠΈΡ€Π°Π½ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΡΡ‚Π°Π΄ΠΈΡŽ образования триэтиламмониСвых солСй бис-Π°Π΄Π΄ΡƒΠΊΡ‚ΠΎΠ². Π’ соотвСтствии с Π΄Π°Π½Π½Ρ‹ΠΌ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΠΌΡ‹ смогли сСлСктивно ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ 2-Π°ΠΌΠΈΠ½ΠΎ-3-этоксикарбонил-4-(2-Ρ‚ΠΈΠ΅Π½ΠΈΠ»)-4H-ΠΏΠΈΡ€Π°Π½ Π±Π΅Π· ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ примСси бис-Π°Π΄Π΄ΡƒΠΊΡ‚Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ΅ взаимодСйствиС. ВриэтиламмониСвыС соли бис-Π°Π΄Π΄ΡƒΠΊΡ‚ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ прямым взаимодСйствиСм 1-этил-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½ 2,2-диоксида с Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ Π² присутствии эквимолярных количСств триэтиламина. Π‘Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ΅ взаимодСйствиС 1-этил-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½Β 2,2-диоксида с ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π½ΠΈΡ‚Ρ€ΠΈΠ»Π°ΠΌΠΈ ΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π°ΠΌΠΈ являСтся Π±ΠΎΠ»Π΅Π΅ эффСктивным инструмСнтом синтСза кондСнсированных 2-Π°ΠΌΠΈΠ½ΠΎ-4-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»-4Н-ΠΏΠΈΡ€Π°Π½ΠΎΠ² ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с постадийным ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ.ΠžΠΏΠΈΡΠ°Π½Ρ– дСякі особливості Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π΅Ρ‚ΠΈΠ»-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½ 2,2-діоксиду Π· ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Π½Ρ–Ρ‚Ρ€ΠΈΠ»Π°ΠΌΠΈ Ρ‚Π° Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Π°ΠΌΠΈ. ВстановлСно, Ρ‰ΠΎ Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ використання ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½Ρ–Ρ‚Ρ€ΠΈΠ»Ρƒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌΠΈ Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π±ΡƒΠ»ΠΈ 2-Π°ΠΌΡ–Π½ΠΎ-4-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»-3-Ρ†Ρ–Π°Π½ΠΎ-6-Π΅Ρ‚ΠΈΠ»-4,6-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΠΏΡ–Ρ€Π°Π½ΠΎ[3,2-c][2,1]Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½ 5,5-діоксиди Π½Π΅Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²Ρ–Π΄ ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρƒ Ρƒ Π²ΠΈΡ…Ρ–Π΄Π½ΠΎΠΌΡƒ Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρ–. ΠŸΡ€ΠΈ використанні Π² Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ–ΠΉ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π·Π°ΠΌΡ–ΡΡ‚ΡŒ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½Ρ–Ρ‚Ρ€ΠΈΠ»Ρƒ Π΅Ρ‚ΠΈΠ»Ρ†Ρ–Π°Π½ΠΎΠ°Ρ†Π΅Ρ‚Π°Ρ‚Ρƒ (Π² якості ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π½Ρ–Ρ‚Ρ€ΠΈΠ»Ρƒ) рСакція Π²Ρ‚Ρ€Π°Ρ‡Π°Ρ” свою ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ. Π£ Ρ†ΡŒΠΎΠΌΡƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ Π² залСТності Π²Ρ–Π΄ ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρƒ Π±ΡƒΠ»ΠΎ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ Ρ‚Ρ€ΠΈ Ρ‚ΠΈΠΏΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π², Π° самС 2-Π°ΠΌΡ–Π½ΠΎ-3-Стоксикарбоніл-4-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»-4Н-ΠΏΡ–Ρ€Π°Π½ΠΈ (для ΠΏΡ–Ρ€ΠΈΠ΄ΠΈΠ½-3-, ΠΏΡ–Ρ€ΠΈΠ΄ΠΈΠ½-4-ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρ–Π² Ρ‚Π° Ρ„ΡƒΡ€Π°Π½-2-ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρƒ), Ρ‚Ρ€ΠΈΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΎΠ½Ρ–Ρ”Π²Π° ΡΡ–Π»ΡŒ біс(1-Π΅Ρ‚ΠΈΠ»-1H-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-2,2-діоксо-4-ΠΎΠ»-3-Ρ–Π»)(2-Ρ‚Ρ–Ρ”Π½Ρ–Π»)ΠΌΠ΅Ρ‚Π°Π½Ρƒ (для Ρ‚Ρ–ΠΎΡ„Π΅Π½-2-ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρƒ) Π°Π±ΠΎ Π΅Ρ‚ΠΈΠ»-2-Ρ†Ρ–Π°Π½ΠΎ-3-(1Н-Ρ–Π½Π΄ΠΎΠ»-3-Ρ–Π»)Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ (для Ρ–Π½Π΄ΠΎΠ»-3-ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρƒ). УтворСння Ρ‚Ρ€ΠΈΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΎΠ½Ρ–Ρ”Π²ΠΈΡ… солСй симСтричних біс-Π°Π΄ΡƒΠΊΡ‚Ρ–Π² Π· використанням Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρ–Π² спостСрігалося Π½Π°ΠΌΠΈ Π²ΠΏΠ΅Ρ€ΡˆΠ΅ Ρ– ΠΉΠΎΠ³ΠΎ розглянуто як ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΈΠΉ Π΄ΠΎ утворСння 2-Π°ΠΌΡ–Π½ΠΎ-4Н-ΠΏΡ–Ρ€Π°Π½Ρ–Π² процСс. Π¦Π΅ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΡƒΠ²Π°Ρ‚ΠΈ ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌ формування 2-Π°ΠΌΡ–Π½ΠΎ-4Н-ΠΏΡ–Ρ€Π°Π½Ρ–Π², який Π²ΠΊΠ»ΡŽΡ‡Π°Ρ” ΡΡ‚Π°Π΄Ρ–ΡŽ утворСння Ρ‚Ρ€ΠΈΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΎΠ½Ρ–Ρ”Π²ΠΈΡ… солСй біс-Π°Π΄ΡƒΠΊΡ‚Ρ–Π². Π“Ρ€ΡƒΠ½Ρ‚ΡƒΡŽΡ‡ΠΈΡΡŒ Π½Π° Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠΌΡƒ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–, ΠΌΠΈ змогли сСлСктивно ΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΠΈ 2-Π°ΠΌΡ–Π½ΠΎ-3-Стоксикарбоніл-4-(2-Ρ‚Ρ–Ρ”Π½Ρ–Π»)-4H-ΠΏΡ–Ρ€Π°Π½ Π±Π΅Π· Π΄ΠΎΠΌΡ–ΡˆΠΎΠΊ біс-Π°Π΄ΡƒΠΊΡ‚Ρƒ, Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‡ΠΈ Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρƒ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–ΡŽ. Нами Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ спосіб одСрТання Ρ‚Ρ€ΠΈΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΎΠ½Ρ–Ρ”Π²ΠΈΡ… солСй біс-Π°Π΄ΡƒΠΊΡ‚Ρ–Π² ΠΏΡ€ΡΠΌΠΎΡŽ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ”ΡŽ 1-Π΅Ρ‚ΠΈΠ»-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½ 2,2-діоксиду Π· Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Π°ΠΌΠΈ Π² присутності Сквімолярних ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Π΅ΠΉ Ρ‚Ρ€ΠΈΠ΅Ρ‚ΠΈΠ»Π°ΠΌΡ–Π½Ρƒ. Π‘ΡƒΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Π° взаємодія Π΅Ρ‚ΠΈΠ»-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½ 2,2-діоксиду Π· ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Π½Ρ–Ρ‚Ρ€ΠΈΠ»Π°ΠΌΠΈ Ρ‚Π° Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»ΠΊΠ°Ρ€Π±Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Π°ΠΌΠΈ Ρ” Π±Ρ–Π»ΡŒΡˆ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌ інструмСнтом синтСзу кондСнсованих 2-Π°ΠΌΡ–Π½ΠΎ-4-Π³Π΅Ρ‚Π΅Ρ€ΠΈΠ»-4Н-ΠΏΡ–Ρ€Π°Π½Ρ–Π² Β Ρƒ порівнянні Π· постадійним ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΎΠΌ

    On the possibility of refining by means of optical location some astronomical parameters of the system - Earth-Moon

    Get PDF
    Optical location of moon in Earth-Moon system using artificial light reflector, on lunar surfac

    E2 strengths and transition radii difference of one-phonon 2+ states of 92Zr from electron scattering at low momentum transfer

    Full text link
    Background: Mixed-symmetry 2+ states in vibrational nuclei are characterized by a sign change between dominant proton and neutron valence-shell components with respect to the fully symmetric 2+ state. The sign can be measured by a decomposition of proton and neutron transition radii with a combination of inelastic electron and hadron scattering [C. Walz et al., Phys. Rev. Lett. 106, 062501 (2011)]. For the case of 92Zr, a difference could be experimentally established for the neutron components, while about equal proton transition radii were indicated by the data. Method: Differential cross sections for the excitation of one-phonon 2+ and 3- states in 92Zr have been measured with the (e,e') reaction at the S-DALINAC in a momentum transfer range q = 0.3-0.6 fm^(-1). Results: Transition strengths B(E2;2+_1 -> 0+_1) = 6.18(23), B(E2; 2+_2 -> 0+_1) = 3.31(10) and B(E3; 3-_1 -> 0+_1) = 18.4(11) Weisskopf units are determined from a comparison of the experimental cross sections to quasiparticle-phonon model (QPM) calculations. It is shown that a model-independent plane wave Born approximation (PWBA) analysis can fix the ratio of B(E2) transition strengths to the 2+_(1,2) states with a precision of about 1%. The method furthermore allows to extract their proton transition radii difference. With the present data -0.12(51) fm is obtained. Conclusions: Electron scattering at low momentum transfers can provide information on transition radii differences of one-phonon 2+ states even in heavy nuclei. Proton transition radii for the 2+_(1,2) states in 92Zr are found to be identical within uncertainties. The g.s. transition probability for the mixed-symmetry state can be determined with high precision limited only by the available experimental information on the B(E2; 2+_1 -> 0+_1) value.Comment: 14 pages, 5 figures, submitted to Phys. Rev. C, revised manuscrip

    Determination of bottomhole pressure by using multivariate statistical models (on example of formation TL-BB Yurchukskoie field)

    Get PDF
    The problem of determining BHP in production wells not equipped with depth measuring systems, it is relevant for many of the oil fields of Perm Krai. In practice, the absence of special devices for downhole pump bottomhole pressure is determined by converting the dynamic level. With this approach, the main difficulty is the calculation of the density of the gas-liquid mixture, the accuracy of which is low due to the influence of numerous complicating factors. In this paper the fundamentally different approach to the definition of bottomhole pressure, considered on one of the well equipped with high-precision depth measurement system, of Tl-Bb layer of Yurchukskoe field. The initial data are direct measurements of downhole pressure, as well as a number of other indicators of its operation (flow rates of oil and liquid, water content, dynamic level, the pump depth below the dynamic level, the pressure of the annulus). The first stage analysis of the data led to the conclusion that the bottomhole pressure during the observation period varied, with different directions: the first is gradually reduced, then - increased. In this regard, the study of influence of operating parameters on the value of BHP held for three cases: for the entire period of observation, as well as separately for the period of its decline and the increase. Statistical analysis of the averages and distribution densities possible to identify the parameters that influence the bottomhole pressure, and found that the effect is mixed. At the final stage the multidimensional statistical models that take into account the effect of multidirectional operating indicators BHP have been built. "Functionality" verification of developed models was made on the example of three other wells of the same development object. This verification confirmed the feasibility of using developed models for determining the values of bottomhole pressure from known values of indicators for well operation and all the proposed approach in general

    SOFT LAW REALISATION IN THE CONTEXT OF Β«PRINCIPLES RELEVANT TO THE USE OF NUCLEAR POWER SOURCES IN OUTER SPACEΒ»: CASE STUDY THE RUSSIAN FEDERATION, THE UNITED STATES OF AMERICA AND THE EUROPEAN UNION STATES

    Get PDF
    Nowadays one of the most significant discussions in the international public law relates to the concept and the role of β€œsoft law”. Some researchers assert the point of view of existence of such law, others consider that it is a new source of public international law However, different approaches don’t exclude the basic char-acteristics of soft law that is a non-binding nature and a streamlines process of drafting. Because of this situation, Member-States of public international organizations tend to use soft law as a pragmatic way of organizing interactions among sovereign states the in case of difficulties to pass unified international treaty. This article argues that similar practices also exist in international space law. Since the entry in force of the Moon Agreement in 1979, the Member States of UN COPUOS have not passed any additional international space treaties. Instead, they have found a solution for new chal-lenges: drafting and accepting soft law acts like UN General Assembly Resolutions (hereinafter GA Resolutions) and others. While GA Resolutions are not legally binding, States can transform them into national legislations and doing so they will have to be responsible for certain space activities which have not been regulated internationally yet. The purpose of this article is to provide an overview on the establishment of soft law as a new source of international space law by analyzing and comparing state practice in Russia, the USA and in several Member States of the European Union (EU). The emphasis will be made on the transformation of provisions of the UN General Assembly Resolution β€œPrinciples Relevant to the Use of Nuclear Pow-er Sources in Outer Space” (hereinafter the NPS Principles) as nuclear power sources in outer space should be based on a thorough safety assessment. The article starts by a short overview of the concept of β€œsoft law” and the resolutions produced by UN COPUOS. Then it will go on to the main three parts besides conclusion. The first chapter gives a brief overview of the drafting history of the NPS Principles and the second deals with activities of UN COPUOS and IAEA on the matter of nuclear power sources use in outer space. The last chapter pre-sents several case studies focusing on the following questions which provisions of NPS Principles have been implemented into national legislative system, what is the novel and what are the differences among the various national law instruments in these countries
    • …
    corecore