833 research outputs found

    Functional Liftings of Vectorial Variational Problems with Laplacian Regularization

    Full text link
    We propose a functional lifting-based convex relaxation of variational problems with Laplacian-based second-order regularization. The approach rests on ideas from the calibration method as well as from sublabel-accurate continuous multilabeling approaches, and makes these approaches amenable for variational problems with vectorial data and higher-order regularization, as is common in image processing applications. We motivate the approach in the function space setting and prove that, in the special case of absolute Laplacian regularization, it encompasses the discretization-first sublabel-accurate continuous multilabeling approach as a special case. We present a mathematical connection between the lifted and original functional and discuss possible interpretations of minimizers in the lifted function space. Finally, we exemplarily apply the proposed approach to 2D image registration problems.Comment: 12 pages, 3 figures; accepted at the conference "Scale Space and Variational Methods" in Hofgeismar, Germany 201

    Revisiting energy release rates in brittle fracture

    No full text
    International audienceWe revisit in a 2d setting the notion of energy release rate, which plays a pivotal role in brittle fracture. Through a blow-up method, we extend that notion to crack patterns which are merely closed sets connected to the crack tip. As an application, we demonstrate that, modulo a simple meta-stability principle, a moving crack cannot generically kink while growing continuously in time. This last result potentially renders obsolete in our opinion a longstanding debate in fracture mechanics on the correct criterion for kinking

    Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization

    Get PDF
    We present a practical implementation of an optimal first-order method, due to Nesterov, for large-scale total variation regularization in tomographic reconstruction, image deblurring, etc. The algorithm applies to μ\mu-strongly convex objective functions with LL-Lipschitz continuous gradient. In the framework of Nesterov both μ\mu and LL are assumed known -- an assumption that is seldom satisfied in practice. We propose to incorporate mechanisms to estimate locally sufficient μ\mu and LL during the iterations. The mechanisms also allow for the application to non-strongly convex functions. We discuss the iteration complexity of several first-order methods, including the proposed algorithm, and we use a 3D tomography problem to compare the performance of these methods. The results show that for ill-conditioned problems solved to high accuracy, the proposed method significantly outperforms state-of-the-art first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure

    Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations

    Get PDF
    We discuss a numerical formulation for the cell problem related to a homogenization approach for the study of wetting on micro rough surfaces. Regularity properties of the solution are described in details and it is shown that the problem is a convex one. Stability of the solution with respect to small changes of the cell bottom surface allows for an estimate of the numerical error, at least in two dimensions. Several benchmark experiments are presented and the reliability of the numerical solution is assessed, whenever possible, by comparison with analytical one. Realistic three dimensional simulations confirm several interesting features of the solution, improving the classical models of study of wetting on roughness

    Iterative algorithms for total variation-like reconstructions in seismic tomography

    Full text link
    A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seismic recovery problems are treated. A number of simple iterative recovery algorithms applicable to these problems are described. The convergence speed of these algorithms is compared numerically in this setting. For the constrained formulation a new algorithm is proposed and its convergence is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25

    Activity Identification and Local Linear Convergence of Douglas--Rachford/ADMM under Partial Smoothness

    Full text link
    Convex optimization has become ubiquitous in most quantitative disciplines of science, including variational image processing. Proximal splitting algorithms are becoming popular to solve such structured convex optimization problems. Within this class of algorithms, Douglas--Rachford (DR) and alternating direction method of multipliers (ADMM) are designed to minimize the sum of two proper lower semi-continuous convex functions whose proximity operators are easy to compute. The goal of this work is to understand the local convergence behaviour of DR (resp. ADMM) when the involved functions (resp. their Legendre-Fenchel conjugates) are moreover partly smooth. More precisely, when both of the two functions (resp. their conjugates) are partly smooth relative to their respective manifolds, we show that DR (resp. ADMM) identifies these manifolds in finite time. Moreover, when these manifolds are affine or linear, we prove that DR/ADMM is locally linearly convergent. When JJ and GG are locally polyhedral, we show that the optimal convergence radius is given in terms of the cosine of the Friedrichs angle between the tangent spaces of the identified manifolds. This is illustrated by several concrete examples and supported by numerical experiments.Comment: 17 pages, 1 figure, published in the proceedings of the Fifth International Conference on Scale Space and Variational Methods in Computer Visio

    Solving Uncalibrated Photometric Stereo using Total Variation

    Get PDF
    International audienceEstimating the shape and appearance of an object, given one or several images, is still an open and challenging research problem called 3D-reconstruction. Among the different techniques available, photometric stereo (PS) produces highly accurate results when the lighting conditions have been identified. When these conditions are unknown, the problem becomes the so-called uncalibrated PS problem, which is ill-posed. In this paper, we will show how total variation can be used to reduce the ambiguities of uncalibrated PS, and we will study two methods for estimating the parameters of the generalized bas-relief ambiguity. These methods will be evaluated through the 3D-reconstruction of real-world objects

    Power calculation for gravitational radiation: oversimplification and the importance of time scale

    Full text link
    A simplified formula for gravitational-radiation power is examined. It is shown to give completely erroneous answers in three situations, making it useless even for rough estimates. It is emphasized that short timescales, as well as fast speeds, make classical approximations to relativistic calculations untenable.Comment: Three pages, no figures, accepted for publication in Astronomische Nachrichte

    Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition

    Get PDF
    This paper focuses on multi-scale approaches for variational methods and corresponding gradient flows. Recently, for convex regularization functionals such as total variation, new theory and algorithms for nonlinear eigenvalue problems via nonlinear spectral decompositions have been developed. Those methods open new directions for advanced image filtering. However, for an effective use in image segmentation and shape decomposition, a clear interpretation of the spectral response regarding size and intensity scales is needed but lacking in current approaches. In this context, L1L^1 data fidelities are particularly helpful due to their interesting multi-scale properties such as contrast invariance. Hence, the novelty of this work is the combination of L1L^1-based multi-scale methods with nonlinear spectral decompositions. We compare L1L^1 with L2L^2 scale-space methods in view of spectral image representation and decomposition. We show that the contrast invariant multi-scale behavior of L1TVL^1-TV promotes sparsity in the spectral response providing more informative decompositions. We provide a numerical method and analyze synthetic and biomedical images at which decomposition leads to improved segmentation.Comment: 13 pages, 7 figures, conference SSVM 201
    corecore