833 research outputs found
Functional Liftings of Vectorial Variational Problems with Laplacian Regularization
We propose a functional lifting-based convex relaxation of variational
problems with Laplacian-based second-order regularization. The approach rests
on ideas from the calibration method as well as from sublabel-accurate
continuous multilabeling approaches, and makes these approaches amenable for
variational problems with vectorial data and higher-order regularization, as is
common in image processing applications. We motivate the approach in the
function space setting and prove that, in the special case of absolute
Laplacian regularization, it encompasses the discretization-first
sublabel-accurate continuous multilabeling approach as a special case. We
present a mathematical connection between the lifted and original functional
and discuss possible interpretations of minimizers in the lifted function
space. Finally, we exemplarily apply the proposed approach to 2D image
registration problems.Comment: 12 pages, 3 figures; accepted at the conference "Scale Space and
Variational Methods" in Hofgeismar, Germany 201
Revisiting energy release rates in brittle fracture
International audienceWe revisit in a 2d setting the notion of energy release rate, which plays a pivotal role in brittle fracture. Through a blow-up method, we extend that notion to crack patterns which are merely closed sets connected to the crack tip. As an application, we demonstrate that, modulo a simple meta-stability principle, a moving crack cannot generically kink while growing continuously in time. This last result potentially renders obsolete in our opinion a longstanding debate in fracture mechanics on the correct criterion for kinking
Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization
We present a practical implementation of an optimal first-order method, due
to Nesterov, for large-scale total variation regularization in tomographic
reconstruction, image deblurring, etc. The algorithm applies to -strongly
convex objective functions with -Lipschitz continuous gradient. In the
framework of Nesterov both and are assumed known -- an assumption
that is seldom satisfied in practice. We propose to incorporate mechanisms to
estimate locally sufficient and during the iterations. The mechanisms
also allow for the application to non-strongly convex functions. We discuss the
iteration complexity of several first-order methods, including the proposed
algorithm, and we use a 3D tomography problem to compare the performance of
these methods. The results show that for ill-conditioned problems solved to
high accuracy, the proposed method significantly outperforms state-of-the-art
first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure
Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations
We discuss a numerical formulation for the cell problem related to a homogenization
approach for the study of wetting on micro rough surfaces. Regularity properties of the solution are
described in details and it is shown that the problem is a convex one. Stability of the solution with
respect to small changes of the cell bottom surface allows for an estimate of the numerical error, at least
in two dimensions. Several benchmark experiments are presented and the reliability of the numerical
solution is assessed, whenever possible, by comparison with analytical one. Realistic three dimensional
simulations confirm several interesting features of the solution, improving the classical models of study
of wetting on roughness
Iterative algorithms for total variation-like reconstructions in seismic tomography
A qualitative comparison of total variation like penalties (total variation,
Huber variant of total variation, total generalized variation, ...) is made in
the context of global seismic tomography. Both penalized and constrained
formulations of seismic recovery problems are treated. A number of simple
iterative recovery algorithms applicable to these problems are described. The
convergence speed of these algorithms is compared numerically in this setting.
For the constrained formulation a new algorithm is proposed and its convergence
is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25
Activity Identification and Local Linear Convergence of Douglas--Rachford/ADMM under Partial Smoothness
Convex optimization has become ubiquitous in most quantitative disciplines of
science, including variational image processing. Proximal splitting algorithms
are becoming popular to solve such structured convex optimization problems.
Within this class of algorithms, Douglas--Rachford (DR) and alternating
direction method of multipliers (ADMM) are designed to minimize the sum of two
proper lower semi-continuous convex functions whose proximity operators are
easy to compute. The goal of this work is to understand the local convergence
behaviour of DR (resp. ADMM) when the involved functions (resp. their
Legendre-Fenchel conjugates) are moreover partly smooth. More precisely, when
both of the two functions (resp. their conjugates) are partly smooth relative
to their respective manifolds, we show that DR (resp. ADMM) identifies these
manifolds in finite time. Moreover, when these manifolds are affine or linear,
we prove that DR/ADMM is locally linearly convergent. When and are
locally polyhedral, we show that the optimal convergence radius is given in
terms of the cosine of the Friedrichs angle between the tangent spaces of the
identified manifolds. This is illustrated by several concrete examples and
supported by numerical experiments.Comment: 17 pages, 1 figure, published in the proceedings of the Fifth
International Conference on Scale Space and Variational Methods in Computer
Visio
Solving Uncalibrated Photometric Stereo using Total Variation
International audienceEstimating the shape and appearance of an object, given one or several images, is still an open and challenging research problem called 3D-reconstruction. Among the different techniques available, photometric stereo (PS) produces highly accurate results when the lighting conditions have been identified. When these conditions are unknown, the problem becomes the so-called uncalibrated PS problem, which is ill-posed. In this paper, we will show how total variation can be used to reduce the ambiguities of uncalibrated PS, and we will study two methods for estimating the parameters of the generalized bas-relief ambiguity. These methods will be evaluated through the 3D-reconstruction of real-world objects
Power calculation for gravitational radiation: oversimplification and the importance of time scale
A simplified formula for gravitational-radiation power is examined. It is
shown to give completely erroneous answers in three situations, making it
useless even for rough estimates. It is emphasized that short timescales, as
well as fast speeds, make classical approximations to relativistic calculations
untenable.Comment: Three pages, no figures, accepted for publication in Astronomische
Nachrichte
Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition
This paper focuses on multi-scale approaches for variational methods and
corresponding gradient flows. Recently, for convex regularization functionals
such as total variation, new theory and algorithms for nonlinear eigenvalue
problems via nonlinear spectral decompositions have been developed. Those
methods open new directions for advanced image filtering. However, for an
effective use in image segmentation and shape decomposition, a clear
interpretation of the spectral response regarding size and intensity scales is
needed but lacking in current approaches. In this context, data
fidelities are particularly helpful due to their interesting multi-scale
properties such as contrast invariance. Hence, the novelty of this work is the
combination of -based multi-scale methods with nonlinear spectral
decompositions. We compare with scale-space methods in view of
spectral image representation and decomposition. We show that the contrast
invariant multi-scale behavior of promotes sparsity in the spectral
response providing more informative decompositions. We provide a numerical
method and analyze synthetic and biomedical images at which decomposition leads
to improved segmentation.Comment: 13 pages, 7 figures, conference SSVM 201
- …
