152 research outputs found

    Fluoride in ash leachates: environmental implications at Popocatépetl volcano, central Mexico

    Get PDF
    Ash emitted by volcanic eruptions, even of moderate magnitude, may affect the environment and the health of humans and animals through different mechanisms at distances significantly larger than those indicated in the volcanic hazard maps. One such mechanism is the high capacity of ash to transport toxic volatiles like fluoride, as soluble condensates on the particles' surface. The mobilization and hazards related to volcanic fluoride are discussed based on the data obtained during the recent activity of Popocatépetl volcano in Central Mexico

    Graphite Oxide: A Simple and Reproducible Synthesis Route

    Get PDF
    The synthesis of graphite oxide (GrO) by oxidation of graphite has been carried out by different procedures. In this chapter, we describe a simple synthesis route based on Hummers’ method without the usage of NaNO3 achieving nearly the same outcomes, and this methodology is directed toward high-quality scale production of GrO with similar properties compared with GrO obtained with traditional and improved Hummers’ methods. The GrO was obtained in a series of batch reactions and characterized by different techniques, and the results showed identical interlayer d-space, type and content of oxygen functionalities, and ID/IG ratio. The high reproducibility of this methodology offers an efficient alternative for the large-scale production of graphene oxide

    Block Copolymer at Nano-Patterned Surfaces

    Full text link
    We present numerical calculations of lamellar phases of block copolymers at patterned surfaces. We model symmetric di-block copolymer films forming lamellar phases and the effect of geometrical and chemical surface patterning on the alignment and orientation of lamellar phases. The calculations are done within self-consistent field theory (SCFT), where the semi-implicit relaxation scheme is used to solve the diffusion equation. Two specific set-ups, motivated by recent experiments, are investigated. In the first, the film is placed on top of a surface imprinted with long chemical stripes. The stripes interact more favorably with one of the two blocks and induce a perpendicular orientation in a large range of system parameters. However, the system is found to be sensitive to its initial conditions, and sometimes gets trapped into a metastable mixed state composed of domains in parallel and perpendicular orientations. In a second set-up, we study the film structure and orientation when it is pressed against a hard grooved mold. The mold surface prefers one of the two components and this set-up is found to be superior for inducing a perfect perpendicular lamellar orientation for a wide range of system parameters

    Evaluating the potential for Haloarchaea to serve as ice nucleating particles

    Get PDF
    Aerosols play a crucial role in cloud formation. Biologically derived materials from bacteria, fungi, pollen, lichen, viruses, algae, and diatoms can serve as ice nucleating particles (INPs), some of which initiate glaciation in clouds at relatively warm freezing temperatures. However, determining the magnitude of the interactions between clouds and biologically derived INPs remains a significant challenge due to the diversity and complexity of bioaerosols and limited observations of such aerosols facilitating cloud ice formation. Additionally, microorganisms from the domain Archaea have, to date, not been evaluated as INPs. Here, we present the first results reporting the ice nucleation activity of four species in the class Haloarchaea. Intact cells of Halococcus morrhuae and Haloferax sulfurifontis demonstrated the ability to induce immersion freezing at temperatures up to −18 ∘C, while lysed cells of Haloquadratum walsbyi and Natronomonas pharaonis were unable to serve as immersion INPs. Exposure to heat and peroxide digestion indicated that the INPs of intact cells were driven by organic (H. morrhuae and H. sulfurifontis) and possibly also heat labile materials (H. sulfurifontis only). While halophiles are prominent in hypersaline environments such as the Great Salt Lake and the Dead Sea, other members of the Archaea, such as methanogens and thermophiles, are prevalent in anoxic systems in seawater, sea ice, marine sediments, glacial ice, permafrost, and other cold niches. Archaeal extremophiles are both diverse and highly abundant. Thus, it is important to assess their ability to serve as INPs as it may lead to an improved understanding of biological impacts on clouds.</p

    Symbiosis at its limits: ecophysiological consequences of lichenization to the genus Prasiola in Antarctica

    Get PDF
    Lichens represent a symbiotic relationship between at least one fungal and one photosynthetic partner. The association between the lichen-forming fungus Mastodia tessellata (Verrucariaceae) and different species of Prasiola (Trebouxiophyceae) has an amphipolar distribution and represents a unique case study for the understanding of lichen symbiosis because of the macroalgal nature of the photobiont, the flexibility of the symbiotic interaction and the co-existence of free-living and lichenized forms in the same microenvironment. In this context, we aimed to (1) characterize the photosynthetic performance of co-occurring populations of free-living and lichenized Prasiola and (2) assess the effect of the symbiosis on water relations in Prasiola, including its tolerance of desiccation and its survival and performance under sub-zero temperatures

    On universality of critical behavior in the focusing nonlinear Schr\uf6dinger equation, elliptic umbilic catastrophe and the Tritronqu\ue9e solution to the Painlev\ue9-I equation

    Get PDF
    We argue that the critical behavior near the point of "gradient catastrophe" of the solution to the Cauchy problem for the focusing nonlinear Schrodinger equation i epsilon Psi(t) + epsilon(2)/2 Psi(xx) + vertical bar Psi vertical bar(2)Psi = 0, epsilon << 1, with analytic initial data of the form Psi( x, 0; epsilon) = A(x)e(i/epsilon) (S(x)) is approximately described by a particular solution to the Painleve-I equation

    On critical behaviour in systems of Hamiltonian partial differential equations

    Get PDF
    We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlev\ue9-I (PI) equation or its fourth-order analogue P2I. As concrete examples, we discuss nonlinear Schr\uf6dinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p&lt;0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p&lt;0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding
    • 

    corecore