5,722 research outputs found

    Clinical and biochemical response to neridronate treatment in a patient with osteoporosis-pseudoglioma syndrome (OPPG)

    Get PDF
    Osteoporosis-pseudoglioma syndrome (OPPG) is a rare autosomal recessive syndrome characterized by juvenile-onset osteoporosis and ocular abnormalities due to a low-density lipoprotein receptor-related protein 5 (LRP5) gene mutation. Treatment with bisphosphonates, particularly with pamidronate and risedronate, has been reported to be of some efficacy in this condition. We report on a patient with OPPG due to an LRP5 gene mutation, who showed an encouraging response after a 36-month period of neridronate therapy. We report a case of a patient treated with bisphosphonates. Bisphosphonates should be administered in OPPG patients as a first-line therapy during early childhood

    Serum creatine kinase isoenzymes in children with osteogenesis imperfecta

    Get PDF
    This study evaluates serum creatine kinase isoenzyme activity in children with osteogenesis imperfecta to determine its usefulness as a biochemical marker during treatment with bisphosphonate. The changes of creatine kinase (CK) isoenzyme activity during and after discontinuation therapy were observed. These results could be useful in addressing over-treatment risk prevention. Introduction The brain isoenzyme of creatine kinase (CKbb) is highly expressed in mature osteoclasts during osteoclastogenesis, thus plays an important role in bone resorption. We previously identified high serum CKbb levels in 18 children with osteogenesis imperfect (OI) type 1 treated for 1 year with bisphosphonate (neridronate). In the present study, serum CK isoenzymes were evaluated in the same children with continuous versus discontinued neridronate treatment over a further 2-year follow-up period. Methods This study included 18 children with OI type 1, 12 with continued (group A) and 6 with ceased (group B) neridronate treatment. Auxological data, serum biochemical markers of bone metabolism, bone mineral density z-score, and serum total CK and isoenzyme activities were determined in both groups. Results Serum CKbb was progressively and significantly increased in group A (p < 0.004) but rapidly decreased to undetectable levels in group B. In both groups, the cardiac muscle creatine kinase isoenzyme (CKmb) showed a marked decrease, while serum C-terminal telopeptide (CTx) levels were almost unchanged. Conclusions This study provides evidence of the cumulative effect of neridronate administration in increasing serum CKbb levels and the reversible effect after its discontinuation. This approach could be employed for verifying the usefulness of serum CKbb as a biochemical marker in patients receiving prolonged bisphosphonate treatment. Moreover, the decreased serum CKmb levels suggest a systemic effect of these drugs

    Charge redistribution in the formation of one-dimensional lithium wires on Cu(001)

    Get PDF
    We describe the formation of one-dimensional lithium wires on a Cu(001) substrate, providing an atomic-scale description of the onset of metallization in this prototypical adsorption system. A combination of helium atom scattering and density-functional theory reveals pronounced changes in the electronic charge distribution on the formation of the c(5√2×√2)R45° Li/Cu(001) structure, as in-plane bonds are created. Charge donation from Li-substrate bonds is found to facilitate the formation of stable, bonded, and depolarized chains of Li adatoms that coexist with an interleaved phase of independent adatoms. The resultant overlayer has a commensurate charge distribution and lattice modulations but differs fundamentally from structurally similar charge-density wave systems

    Buoyant MHD flows in a vertical channel: the levitation regime

    Get PDF
    Buoyant magnetohydrodynamic (MHD) flows with Joulean and viscous heating effects are considered in a vertical parallel plate channel. The applied magnetic field is uniform and perpendicular to the plates which are subject to adiabatic and isothermal boundary conditions, respectively. The main issue of the paper is the levitation regime, i.e., the fully developed flow regime for large values of the Hartmann number M, when the hydrodynamic pressure gradient evaluated at the temperature of the adiabatic wall is vanishing. The problem is solved analytically by Taylor series method and the solution is validated numerically. It is found that the fluid velocity points everywhere and for all values of M downward. For small M's, the velocity field extends nearly symmetrically (with respect to the mid-plane) over the whole section of the channel between the adiabatic and the isothermal walls. For large values of M, by contrast, the fluid levitates over a broad transversal range of the channel, while the motion becomes concentrated in a narrow boundary layer in the neighborhood of the isothermal wall. Accordingly, the fluid temperature is nearly uniform in the levitation range and decreases rapidly within the boundary layer in front of the isothermal wall. It also turns out that not only the volumetric heat generation by the Joule effect, but also that by viscous friction increases rapidly with increasing values of M, the latter effect being even larger than the former one for all

    Humoral and cellular immunopathology of hepatic and cardiac hamster-into-rat xenograft rejection: Marked stimulation of IgM<sup>++bright</sup>/IgD<sup>+dull</sup> splenic B cells

    Get PDF
    Normal Lewis rat serum contains antibodies (IgM > IgG) that bind to hamster leukocytes and endothelial cells. Transplantation of either the heart or liver from hamster rat results in release of hamster hematolymphoid cells from the graft, which lodge in the recipient spleen (cell migration), where recipient T- and B-cell populations initiate DNA synthesis within one day. There is marked stimulation of splenic IgM++(bright)/IgD+(dull) B cells in the marginal zone and red pulp, which account for 48% of the total splenic blast cell population by 4 days after liver transplantation. CD4+ predominant T-cell proliferation in the splenic periarterial lymphatic sheath and paracortex of peripheral lymph nodes occurs almost simultaneously. The effector phase of rejection in cardiac recipients is dominated by complement-fixing IgM antibodies, which increase daily and result in graft destruction in 3 to 4 days, even in animals treated with FK506. In liver recipients, combined antibody and cellular rejection, associated with graft infiltration by OX8+ natural killer, and fewer W3/25+ (CD4) lymphocytes, are responsible for graft failure in untreated recipients at 6 to 7 days. FK506 inhibits the T-cell response in liver recipients and significantly prolongs graft survival, but does not prevent the rise or deposition of IgM antibodies in the graft. However, a single injection of cyclophosphamide 10 days before transplantation effectively depletes the splenic IgM++(bright)/IgD+(dull) cells and in combination with FK506, results in 100% survival of both cardiac and hepatic xenografts for more than 60 days. Although extrapolation of morphological findings to functional significance is fraught with potential problems, we propose the following mechanisms of xenograft rejection. The reaction initially appears to involve primitive host defense mechanisms, including an IgM-producing subpopulation of splenic B cells and natural killer cells. Based on the reaction and distribution of OX8+ and W3/25+ cells, antibody dependent cell cytotoxicity and delayed-type hypersensitivity responses seem worthy of further investigation as possible effector mechanisms. Effective control of xenograft rejection is likely to require a dual pharmaceutical approach, one to contain T-cell immunity and another to blunt the primitive B-cell response

    A new application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces

    Full text link
    The small perturbations method has been extensively used for waves scattering by rough surfaces. The standard method developped by Rice is difficult to apply when we consider second and third order of scattered fields as a function of the surface height. Calculations can be greatly simplified with the use of reduced Rayleigh equations, because one of the unknown fields can be eliminated. We derive a new set of four reduced equations for the scattering amplitudes, which are applied to the cases of a rough conducting surface, and to a slab where one of the boundary is a rough surface. As in the one-dimensional case, numerical simulations show the appearance of enhanced backscattering for these structures.Comment: RevTeX 4 style, 38 pages, 16 figures, added references and comments on the satellites peak

    Metals in high magnetic field: a new universality class of Fermi liquids

    Full text link
    Parquet equations, describing the competition between superconducting and density-wave instabilities, are solved for a three-dimensional isotropic metal in a high magnetic field when only the lowest Landau level is filled. In the case of a repulsive interaction between electrons, a phase transition to the density-wave state is found at finite temperature. In the opposite case of attractive interaction, no phase transition is found. With decreasing temperature TT, the effective vertex of interaction between electrons renormalizes toward a one-dimensional limit in a self-similar way with the characteristic length (transverse to the magnetic field) decreasing as ln1/6(ωc/T)\ln^{-1/6}(\omega_c/T) (ωc\omega_c is a cutoff). Correlation functions have new forms, previously unknown for conventional one-dimensional or three-dimensional Fermi-liquids.Comment: 13 pages + 4 figures (included
    corecore