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Abstract Buoyant magnetohydrodynamic (MHD) flows

with Joulean and viscous heating effects are considered in a

vertical parallel plate channel. The applied magnetic field

is uniform and perpendicular to the plates which are subject

to adiabatic and isothermal boundary conditions, respec-

tively. The main issue of the paper is the levitation regime,

i.e., the fully developed flow regime for large values of the

Hartmann number M, when the hydrodynamic pressure

gradient evaluated at the temperature of the adiabatic wall

is vanishing. The problem is solved analytically by Taylor

series method and the solution is validated numerically. It

is found that the fluid velocity points everywhere and for

all values of M downward. For small M’s, the velocity field

extends nearly symmetrically (with respect to the mid-

plane) over the whole section of the channel between the

adiabatic and the isothermal walls. For large values of M,

by contrast, the fluid levitates over a broad transversal

range of the channel, while the motion becomes concen-

trated in a narrow boundary layer in the neighborhood of

the isothermal wall. Accordingly, the fluid temperature is

nearly uniform in the levitation range and decreases rapidly

within the boundary layer in front of the isothermal wall. It

also turns out that not only the volumetric heat generation

by the Joule effect, but also that by viscous friction

increases rapidly with increasing values of M, the latter

effect being even larger than the former one for all M.

List of symbols

A series coefficients, (28)

B applied magnetic field

f magnetohydrodynamic force, (2)

g acceleration of gravity

J electric current density, (1)

k fluid thermal conductivity

L channel width

M Hartmann number, (21)

p pressure

P hydrodynamic pressure

q dimensionless heat flux

�q dimensional heat flux
_Q rate of volumetric heat generation

T temperature

u dimensionless velocity, (21)

um dimensionless average velocity

U velocity

U0 velocity scale, (20)

X vertical coordinate

Y transversal coordinate

y dimensionless transversal, (20)

Greek symbols

a slope parameter, (31)

b thermal coefficient of volumetric expansion of the

fluid

l dynamic viscosity

t kinematic viscosity (t = l/q)

q mass density of the fluid

r electrical conductivity
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h dimensionless temperature, (21)

DT temperature scale, (20)

Subscripts, superscripts

m average value

n, j running indices

primes differentiation with respect to the argument

1 Introduction

The broad research interest in magnetohydrodynamic

(MHD) flows of electrically conducting fluids in ducts and

enclosures is motivated by their important industrial appli-

cations in metallurgy and in growing of pure crystals, as

well as in energy engineering. In an earlier work of Potts [1]

the fully developed flow in a vertical channel with isother-

mal walls and an applied transversal magnetic field was

investigated in some detail. Later on, Setayesh and Sahai [2]

consider the effect of the temperature dependent transport

properties on the MHD channel flow. The simultaneous

effect of the Joulean and viscous heating on the channel flow

under isothermal boundary conditions has been examined

analytically and numerically by Umavathi [3] and Umavathi

and Malashetty [4] by applying perturbation methods. The

flow in strong magnetic field in rectangular ducts has been

investigated by Bühler [5] and results on the Rayleigh–

Benard convection in a vertical magnetic field were reported

by Burr and Müller [6]. The oscillatory instability of MHD

flows in rectangular cavities has been analyzed by Gelfgat

and Bar-Yoseph [7]. In a more recent paper by Sposito and

Ciofalo [8] the fully developed mixed convection flow in

vertical rectangular duct has been examined under various

boundary conditions of practical interest.

The aim of the present paper is to investigate the levitation

regime of the MHD flow in a vertical channel whose walls

are subject to adiabatic and isothermal boundary conditions,

respectively. The levitation regime is reached for large

values of the Hartmann number M, when the hydrodynamic

pressure gradient of the fully developed flow, evaluated at

the temperature of the adiabatic wall, becomes zero. To our

knowledge, this regime of the MHD channel flow was not

investigated until now. The mechanical and thermal char-

acteristics of the flow in the levitation regime are examined

in the paper analytically and numerically in detail.

2 Governing equations

2.1 Problem formulation

We consider the steady laminar flow of an electrically

conducting fluid of electric conductivity r in a vertical

parallel plane channel of width L. The X-axis of the

coordinate system is opposite to the acceleration due to the

gravity g and the Y-axis is perpendicular to the channel

walls which are assumed to be impermeable (see Fig. 1).

The left wall (at Y = 0) is insulated (adiabatic wall) and the

right one (at Y = L) is kept at the constant temperature Tw

(isothermal wall). A uniform external magnetic field B is

applied perpendicularly to the channel walls. No external

electric field acts and it is assumed that, comparing to the

external magnetic field, the magnetic field induced by the

moving fluid is negligibly weak. Under these conditions,

the Lorentz force e v�Bð Þ acting on a fluid element of

electric charge e and velocity v, will be experienced by the

fluid element in its own reference frame as the effect of an

electric field E ¼ v�B: This latter field gives rise to an

electric current of density J which, according to Ohm’s

law, is obtained as

J ¼ rE ¼ r v� Bð Þ ð1Þ

The interaction of J with the applied magnetic field B

causes in turn a magnetohydrodynamic force of volume

density f ¼ J�B ¼ r v�Bð Þ�B; which can be transcribed

in the form

f ¼ r v � Bð ÞB� B2v
� �

ð2Þ

The rate of the volumetric heat generation by the Joule

effect, _QJoule ¼ J � E; is given according to (1) by

_QJoule ¼ r v� Bj j2 ð3Þ

Furthermore, we assume that the flow is fully developed

and parallel, the only non-vanishing component of the

velocity field being its X-component U, i.e., v = Uex, where

0 L

X

( )
,

0 0w

adiabatic

q =
,

w

isothermal

T T=

g

Y

B

Fig. 1 Coordinate system, applied magnetic filed B, and adiabatic

and isothermal boundary conditions at Y = 0 and Y = L, respectively
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ex denotes the unit vector of the positive X-axis. This flow

regime is established in long channels far downstream from

the inlet section. As a consequence, (2) and (3) reduce to

f ¼ �rB2Uex; _QJoule ¼ rB2U2 ð4Þ

We assume that the Boussinesq approximation holds and

that, in addition to the Joulean heating, the volumetric heat

generation by viscous friction is also significant. Under all

these assumptions, both the velocity U and the temperature

T of the fluid depend only on the transversal coordinate

Y, the continuity equation is satisfied identically, the

transversal component of the hydrodynamic pressure

gradient qP/qY is vanishing, the planar one, qP/qX is

(a given) constant, the velocity and temperature gradients

along the x-axis are identically vanishing, and the

momentum and energy equations become

� dP

dX
þ l

d2U

dY2
� rB2U þ qgb T � T 0ð Þ½ � ¼ 0 ð5Þ

k
d2T

dY2
þ rB2U2 þ l

dU

dY

� �2

¼ 0 ð6Þ

The no slip conditions and the prescribed thermal boundary

conditions read

U 0ð Þ ¼ U Lð Þ ¼ 0 ð7Þ

�k
dT

dY

����
Y¼0

¼ �q 0ð Þ ¼ 0; T Lð Þ ¼ Tw ð8Þ

In the above equations, P = p + qgX denotes the

hydrodynamic pressure. The magnitude B of the applied

magnetic field is given and the values of q, l, b, k and r
are taken at the reference temperature of the Boussinesq

approximation Tref which, following Morton [11], has been

chosen equal to the temperature T(0) of the insulated wall,

Tref = T(0). We are interested in the levitation regime of the

flow which is reached in strong magnetic field, when

the hydrodynamic pressure gradient evaluated at the

temperature of the adiabatic wall is vanishing,

dP

dX
¼ 0 ð9Þ

In this physical situation the difference between the pres-

sure p and the hydrostatic pressure q g X with q ¼ qjT¼Tref

is the same constant quantity at all stations X of the fully

developed flow.

2.2 Solution procedure

The basic idea of the solution procedure is to first deter-

mine the velocity field U = U(Y) and to express then all the

quantities of physical and engineering interest in terms of

U. Thus the, temperature T(Y) as expressed in terms of U

from (5) is

T Yð Þ ¼ T 0ð Þ þ l
qgb

rB2

l
U � d2U

dY2

� �
ð10Þ

Accordingly, the flux field �q Yð Þ ¼ �kdT=dY is obtained as

�q Yð Þ ¼ kl
qgb

d3U

dY3
� rB2

l
dU

dY

� �
ð11Þ

Substituting (10) in (6) we obtain for the velocity U the

explicit non linear ordinary differential equation of the

fourth order,

d4U

dY4
¼ rB2

l
d2U

dY2
þ qgb

k
U2

� �
þ qgb

k

dU

dY

� �2

ð12Þ

Having in mind (10) and (11), the boundary conditions (7)

and (8) yield the following two differential conditions for

the velocity U

d2U

dY2

����
Y¼0

¼ 0 ð13Þ

d3U

dY3

����
Y¼0

� rB2

l
dU

dY

����
Y¼0

¼ 0 ð14Þ

Thus, the fourth order differential equation (12) along with

the four conditions (8), (13) and (14) specify a closed two

point boundary value problem for the velocity field. The

solution of this problem is the main objective of Sect. 3.

Therefore, anticipating that (for specified B) the solution U

= U(Y) is known, (10) and the second boundary condition

(8) give for the temperature T(0) of the adiabatic wall the

expression

T 0ð Þ ¼ Tw þ
l

qgb
d2U

dY2

����
Y¼L

ð15Þ

Furthermore, (16) and (15) yield the temperature field

T Yð Þ ¼ Tw þ
l

qgb
rB2

l
U þ d2U

dY2

����
Y¼L

� d2U

dY2

� �
ð16Þ

in terms of known quantities. The outgoing heat flux �q Lð Þ
through the isothermal wall is obtained immediately by

substituting Y = L in (11),

�q Lð Þ ¼ kl
qgb

d3U

dY3

����
Y¼L

� rB2

l
dU

dY

����
Y¼L

� �
ð17Þ

In addition to the above equations, a further relationship of

physical interest is the integral balance equation of the heat

fluxes
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�q Lð Þ ¼ �qJoule þ �qViscous ð18Þ

where

�qJoule ¼ rB2

ZL

0

U2dY and �qviscous ¼ l
ZL

0

dU

dY

� �2

dY ð19Þ

are the heat fluxes due to the volumetric heat generation

by Joulean and viscous heating effects, respectively.

Equation (18), which has been obtained by integration of

the energy equation (6), shows that the outgoing heat flux

through the isothermal wall equals, as expected, the sum

of the heat fluxes �qJoule and �qViscous due to the two

simultaneous volumetric heat generation effects. The latter

two quantities can be calculated from (19), once the

velocity field is known. In this way the problem has

basically been solved.

2.3 Nondimensionalization

For our present purpose it is convenient to choose the

velocity and temperature scales

U0 ¼
k

qgbL2
; DT ¼ lU2

0

k
ð20Þ

In terms of the dimensionless quantities

y ¼ M
Y

L
; u yð Þ ¼ 1

M2

U Yð Þ
U0

; h yð Þ ¼ T Yð Þ � Tw

DT
;

q yð Þ ¼ L

kDT
�q Yð Þ; M ¼

ffiffiffi
r
l

r
BL ð21Þ

where M stands for the Hartmann number, (12) and the

associated boundary conditions (7), (13) and (14) become

u0000 ¼ u00 þ u02 þ u2; ð22Þ

u 0ð Þ ¼ 0; u Mð Þ ¼ 0; u00 0ð Þ ¼ 0; u000 0ð Þ ¼ u0 0ð Þ
ð23Þ

Here the primes denote differentiations with respect to y.

The solution of the two point boundary value problem

(22), (23) yields the dimensionless velocity field u = u(y)

for a specified value of M. Then, in terms of this solution u

= u(y),

we obtain from (16) and (21) the dimensionless tem-

perature field

h yð Þ ¼ M4 u yð Þ � u00 yð Þ þ u00 Mð Þ½ � ð24Þ

and from (17) the dimensionless flux field

q yð Þ ¼ M5 u000 yð Þ � u0 yð Þ½ � ¼ �Mh0 yð Þ ð25Þ

Similarly, (18) and (19) go over into the dimensionless

forms

q 1ð Þ ¼ qJoule þ qViscous ð26Þ

qJoule ¼ M5

ZM

0

u2dy; qviscous ¼ M5

ZM

0

u02dy ð27Þ

Equations (22) and (23) reveal a remarkable feature of the

levitating flows. Namely, the flows corresponding to dif-

ferent values of the Hartmann number M, possess the same

universal velocity profile u = u(y), when are observed in

channels of the respective dimensionless widths M. It is

also worth mentioning here that, this property holds not

only on the special velocity and temperature scales (20),

but on all scales. The choice (20) has been privileged since

it implies for the ratio of the Grashof and Reynolds num-

bers Gr = gb L3 DT/t2 and Re ¼ U0L=t; as well as for the

Brinkman number Br = l U0
2/(kDT), the value unity,

Gr=Re ¼ Br ¼ 1.

3 Power series solution

The aim of this section is to give an analytical power series

solution of the boundary value problem (22), (23). To this

end, we first formally expand the function u(y) in a Taylor

series to powers of y,

u yð Þ ¼
X1

n¼0

Anyn ð28Þ

Substituting (28) in (22) and identifying the coefficients of

the same powers of y, we obtain the recurrence equations

Anþ4 ¼
Anþ2

nþ 3ð Þ nþ 4ð Þ

þ
Pn

j¼0 AjAn�j þ jþ 1ð Þ n� jþ 1ð ÞAjþ1An�jþ1

� �

nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ nþ 4ð Þ ;

n ¼ 0; 1; 2; . . . ð29Þ

which allows us to determine all the coefficients A4, A5, A6,

... in terms of the first four ones, A0, A1, A2 and A3. Having

in mind that the coefficients An are related to the

derivatives of u(y) at y = 0 by the relationship

An ¼
u nð Þ 0ð Þ

n!
; ð30Þ

and introducing the notation
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u0 0ð Þ ¼ a ð31Þ

we obtain from (23) the following expressions for the first

four coefficients of series (28),

A0 ¼ 0; A1 ¼
a
1!
; A2 ¼ 0; A3 ¼

a
3!

ð32Þ

Therefore, the coefficients of the series (28) depend only on

the unknown parameter a, An = An(a). The next coefficients

obtained from (29) and (32) are

A4 ¼
a2

4!
; A5 ¼

a
5!
; A6 ¼

5a2

6!
; A7 ¼

2a3 þ a
7!

;

A8 ¼
21a2

8!
; A9 ¼

42a3 þ a
9!

; A10 ¼
24a4 þ 85a2

10!
;

A11 ¼
504a3 þ a

11!
; A12 ¼

882a4 þ 341a2

12!
; . . . ð33Þ

The parameter a represents according to (31) the slope

u0(0) of the dimensionless velocity profile u(y) at the

insulated wall y = 0. The value of a has to be determined

from the second boundary condition (23) which transcribes

to

u Mð Þ � u M; að Þ ¼
X1

n¼0

An að ÞMn ¼ 0 ð34Þ

In this way the two point boundary value problem (22),

(23) can also be viewed as an initial value problem for (22),

with the initial conditions

u 0ð Þ ¼ 0; u0 0ð Þ ¼ a; u00 0ð Þ ¼ 0; u000 0ð Þ ¼ a; ð35Þ

whose solution is subject to the additional condition (34).

The advantage of this reformulation of the original

problem (22), (23) resides in two important features,

namely, (1) the solution of the initial value problem (22),

(35) does exist for any specified value of the parameter

a, and (2) the solution is unique. In this way, the exis-

tence and uniqueness of the solutions of the original

two-point boundary value problem (22), (23) can be

decided (for any finite value of M) with the aid of the

additional condition (34). Once the value of a is deter-

mined, the solution of our velocity boundary value

problem can be obtained from the series solution (28) as

follows

U Yð Þ
U0

¼ M2u yð Þ ¼ M2
X1

n¼0

An að Þ M
Y

L

� �n

ð36Þ

Then, h(y), q(y), qJoule and qviscous can be calculated by

substituting the series (28) into (24)–(27). In addition, the

average velocity Um through a transversal section of the

channel is obtained as

Um

U0

¼ 1

L

ZL

0

U yð Þ
U0

dY ¼ M2
X1

n¼0

AnMn

nþ 1
ð37Þ

In this way the problem has been solved explicitly.

4 Discussion

4.1 Mechanical characteristics

The explicit expression (36) of the velocity field includes

via An the parameter a which represents (from geometrical

point of view) the slope u0(0) of the scaled velocity profile

u(y) at the insulated wall y = 0. From mechanical point of

view, the value of a specifies the (scaled) skin friction of

the flow at the adiabatic channel wall. The remaining

problem is to determine the value of a which, for a spec-

ified M, is obtained as root of (34). The main features of the

roots of (34) become manifest by a simple inspection of

Fig. 2a which shows the following.

• a = 0 is a root of (34) for any value of the Hartmann

number M. This trivial solution corresponds to the static

equilibrium state of the system.

• There exists a unique non trivial root a0 = a0 (M)\0 of

(34) for any given M [ 0. Accordingly, the velocity

solution (36) corresponding to the levitating flow is

unique for any given M [ 0.

• The root a0 (M) moves toward –? as M ? 0, and

approaches zero as M ? ? (see Fig. 2b). For instance,

a0 (0.1) = –28888 and a0 (10) = –0.001139 (these cases

are not included in Fig. 2a, b).

The dimensionless velocity profiles U(Y)/U0 = M2 u(y)

corresponding to the ‘‘small’’ values M = 0.9,1.0,1.2 and

1.5 of the Hartmann number (already selected for Fig. 2a),

are plotted as functions of Y/L in Fig. 3a. In addition, in

Fig. 3a also the solution corresponding to the case M = 0

has been included, which, on the scale ~y ¼ Y=L of the

function U Yð Þ=U0 ¼ ~u ~yð Þ; corresponds to the value

~a ¼ �28:8781 of the slope parameter ~a (for details see

Appendix A). Furthermore, Fig. 3b shows the profiles

U(Y)/U0 = M2u(y) for the ‘‘large’’ values M = 3, 5, 8 and 10

of the Hartmann number. One sees that the fluid velocity

points everywhere and for all values of M in the downward

direction. With respect to the mid-plane of the channel, the

velocity field extends nearly symmetrically over the whole

section of the channel between the adiabatic and the iso-

thermal wall, as long as the Hartmann number is small

(Fig. 3a). The minima of these small-M profiles are shifted

only slightly toward the isothermal wall. For instance,

(Ymin/L = 0.612154,Umin/U0 = –13.0742) for M = 0, and
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(Ymin/L = 0.646112,Umin/U0 = –15.6549) for M = 1.5.

However, with increasing values of M, the velocity field

undergoes a dramatic change, namely the fluid levitates

over a large transversal range of the channel, while the

motion becomes concentrated in a narrow boundary layer

in the neighborhood of the isothermal wall (Fig. 3b). The

larger M, the thinner the velocity boundary layer, and the

larger the levitation range. The average velocity (volu-

metric flow rate) given by (37) also decreases with

increasing values of M rapidly. For instance, Um/U0 = –

8.87 for M = 0.9, and Um/U0 = –47.47 for M = 10.

4.2 Thermal characteristics

The main thermal characteristics of the levitating flows are

illustrated for ‘‘small’’ and ‘‘large’’ values of the Hartmann

number in Figs. 4, 5 and 6. Figure 4a and b show the

dimensionless temperature profiles h = h (y) and Fig. 5a

and b the corresponding heat fluxes within the flow,

respectively. The physical correlation between these fig-

ures on the one hand, and the velocity profiles shown in

Fig. 3a and b on the other hand, becomes immediately

evident. Indeed, for small values of M, where the velocity

field extends nearly symmetrically over the whole section

of the channel (Fig. 3a), the temperature decreases gradu-

ally from the maximum value h (0) reached at the adiabatic

wall, to the value zero at the isothermal wall (Fig. 4a). At

the same time the total heat flux generated by Joulean and

viscous heating increases continuously from zero at the

adiabatic wall, to the maximum value reached at the iso-

thermal wall (Fig. 5a). For large values of M, by contrast,

in the transversal range of the channel where the fluid

levitates (Fig. 3b), the temperature is almost uniform

(Fig. 4b) and the transversal heat flux is (nearly) vanishing

(Fig. 5b). However, across the boundary layer next to the

isothermal boundary, both the fluid temperature and the

heat flux experience a steep change with increasing M. The

rapid increase of the heat flux near to the isothermal wall

(Fig. 5b) is due to the intense heat generation by Joulean

and viscous heating within the boundary layer (Fig. 6b). It

is worth emphasizing here again that with increasing value

of the Hartmann number, not only the volumetric heat

generation by the Joule effect, but also that by viscous

friction increases rapidly. The latter effect is even stronger

than the former one (see Fig. 6a, b).
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Fig. 2 a Plot of u(M;a) as a function of the parameter a according to

(34) for four different values of the Hartmann number M. The dots on

the a-axis mark the corresponding roots a0 = a0 (M) of equation

u(M;a) = 0; a0 (0.9) = –40.58; a0 (1.0) = –29.72; a0 (1.2) = –17.38; a0

(1.5) = –9.04. b Plot of the root a0 = a0 (M)\0 of (34) as a function

of the Hartmann number
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Fig. 3 a Plots of the dimensionless velocity profiles U(Y)/U0

= M2u(y) as functions of Y/L for M = 0.9, 1.0, 1.2 and 1.5, and of

U Yð Þ=U0 ¼ ~u ~yð Þ as a function of ~y ¼ Y=L for M = 0 (see Appendix

A). b: Plots of the dimensionless velocity profiles U(Y)/U0 = M2u(y)

as functions of Y/L for M = 3, 5, 8 and 10
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4.3 Convergence acceleration and validation of results

A shortcoming of power series solutions of differential

equations consists often in their slow convergence, which

requires that in their practical use a large number of terms

must be considered. This may cause in turn steeply

increasing computational times. In the case of Taylor series

solution reported in Sect. 3, this problem may also arise for

large values of the slope parameter a (see e.g., Eqs. (33)).

The convergence can sometimes be accelerated with the

aid of the classical Euler–Knopp type series transformation

[9]. In the present calculations, following the work of

Gabutti and Lyness [10], an improved form of the Euler–

Knopp transformation has been used. Applied to the series

(28) of the scaled velocity u(y), the transformation of Ga-

butti and Lyness gives

u yð Þ ¼
X1

n¼0

n!

1� pð Þnþ1

Xn

j¼0

�pð Þn�j

n� jð Þ!j! Ajy
j

 !

; ð38Þ

Here p is a tuning parameter which can be chosen at

convenience (for p = –1 one recovers the classical Euler–

Knopp type transformation). All the other series equations

of Sect. 3 can be transformed similarly. In order to check

the convergence of the initial and of the transformed series

for specified values of the parameters involved, it is useful

to plot their respective terms in the increasing order of the

summation indices. This procedure provides at the same

time information about the number of terms which has to

be considered for a required accuracy of the results.

In addition to ‘‘convergence-tuning’’ with the aid of the

transformation (38), the re-formulation of our basic two

point boundary value problem (22), (23) into the initial-

value problem (22), (35) with the additional condition (34),

also offers a powerful tool for a straightforward validation

of the results obtained by series summations (since for

initial value problems, highly efficient library programs are

available). The present paper has made use of all the above

numerical procedures in the validation of the results

presented.

5 Summary and conclusions

In the present paper buoyant MHD flows with simultaneous

Joulean and viscous heating effects were considered in a
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vertical parallel plate channel subject to adiabatic and

isothermal boundary conditions, and to a uniform magnetic

field applied in a transversal direction. The main concern of

the paper was the levitation regime of the flow, i.e., the

fully developed parallel flow regime for large values of the

Hartmann number M with vanishing hydrodynamic pres-

sure gradient. The results can be summarized as follows.

1. The velocity of the flow is directed everywhere

downward and for all values of M.

2. In the neighborhood of the left wall, the curvature of

the velocity profile is vanishing for all values of M,

according to the boundary condition u00(0) = 0 (see

Fig. 3a, b).

3. For small values of M, the velocity field ‘‘fills’’ the

whole channel, nearly symmetrically with respect to

the mid-plane (see Fig. 3a). Due to the adiabatic wall

condition (dT/dY|Y=0 = 0), in an infinitesimal neigh-

borhood of the left wall the fluid temperature is

unchanged (horizontal tangent, Fig. 4a) and thus the

buoyancy is non-effective here. The buoyancy forces

start to act only at finite distances y, driving the fluid in

downward direction (negative temperature gradient,

Fig. 4a). The magnetic force, as well as the internal

heat generation tend to decelerate the downward

motion of the fluid.

4. For large values of M, the magnetic force tends to

inhibit the downward motion of the fluid. As a

consequence, the fluid levitates over a broad transver-

sal range of the channel (Fig. 3b), the motion being

constrained into a narrow boundary layer in the

neighborhood of the ‘‘cold’’ isothermal wall (Fig. 3b)

where the downward pointing buoyancy forces dom-

inate. This confinement of the motion in a thin

boundary layer is a manifestation of a general MHD

effect with important energy engineering applications.

5. Within the thin boundary layer next to the right wall,

the volumetric heat generation both by Joule effect and

by viscous friction increases rapidly with increasing

values of M, the latter effect being even larger than the

former one for all values of M. As a consequence, with

increasing M, both the heat transfer rate and the

volumetric flow rate increase across the boundary layer

steeply.

The extension of the present work for non-vanishing

values of the hydrodynamic pressure gradient and non-

vanishing incoming heat fluxes �q 0ð Þ is the objective of a

current research work.
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6 Appendix A: Case M = 0

Using the dimensionless variables ~y ¼ Y=L; ~u yð Þ ¼
U Yð Þ=U0; the velocity boundary value problem (12), (7),

(13), (14) reduces in the case M ? 0 to

~u0000 ¼ ~u02; ð39Þ

~u 0ð Þ ¼ 0; ~u 1ð Þ ¼ 0; ~u00 0ð Þ ¼ 0; ~u000 0ð Þ ¼ 0 ð40Þ

Similarly to the case M = 0, the two-point boundary value

problem (39), (40) can be viewed as an initial value

problem for (39) with the initial conditions

~u 0ð Þ ¼ 0; ~u0 0ð Þ ¼ ~a; ~u00 0ð Þ ¼ 0; ~u000 0ð Þ ¼ 0 ð41Þ

whose solution is subject to the additional condition

~u 1ð Þ ¼ 0: The Taylor series solution of this problem is

given by the following equations
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Fig. 6 a Shown are the terms of the heat flux balance equation q(1)

= qJoule + qviscous obtained from (26) and (27) (and multiplied by 10–2)

for M = 0.9,1.0,1.2 and 1.5. b Shown are the terms of the heat flux

balance equation q(1) = qJoule + qviscous obtained from (26) and (27)

(and multiplied by 10–5) for M = 3, 5, 8 and 10
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~u ~yð Þ ¼
X1

n¼0

Cn~yn ð42Þ

Cnþ4 ¼
Pn

j¼0 jþ 1ð Þ n� jþ 1ð ÞCjþ1Cn�jþ1

nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ nþ 4ð Þ ; n¼ 0;1;2; . . .

ð43Þ

where

C0 ¼ 0; C1 ¼ ~a; C2 ¼ 0; C3 ¼ 0 ð44Þ

Equations (45) and (46) imply that all the coefficients

of the expansion (42) are vanishing except for C3n+1,

n = 0,1,2,.... Thus, the first non-vanishing coefficients are

C1 ¼ ~a; C4 ¼
~a2

4!
; C7 ¼

2~a3

7!
;

C10 ¼
24~a4

10!
; C13 ¼

384~a5

13!
; . . . ð45Þ

The value of the parameter ~a has to be determined from the

second boundary condition (40) which transcribes to

~u 1ð Þ ¼
X1

n¼0

Cn ¼
X1

n¼0

C3nþ1 ¼ 0 ð46Þ

With the aid of the Lagrange expansion of implicit

functions, (46) can explicitly be solved for the slope

parameter ~a: The resulting equation

~a ¼ �24 1þ
X1

n¼1

�24ð Þn�1

n!

dn�1

d~an�1

X1

j¼7

Aj

~a

 !n�����
~a¼�24

" #

;

ð47Þ

yields the (unique) solution ~a ¼ �28:8781: The corre-

sponding velocity profile (42), is shown in Fig. 3a. We

mention that a boundary value problem resembling (39),

(40), has been solved by similar methods in [12].
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