426 research outputs found

    Colorectal Cancer Educational Program in a Community Senior Center

    Get PDF
    Colorectal cancer (CRC) is a preventable cancer but prevention can only occur through screening. Screenings are recommended for those 50 to 75 years of age, however rates remain low with 25.6 percent having never been screened and 7.1 percent not up-to-date. The U.S. Preventive Services Task Force (USPSTF) recommends strategies such as education to increase screening rates. Education may be used to inform and motivate individuals to be screened. Research supports the use of educational activities in a community setting to increase CRC knowledge and increase CRC screening rates. A group educational program using the Centers for Disease Control’s (CDC) Screen for Life: National Colorectal Cancer Action Campaign materials was conducted in a community senior center. This project was in partial fulfillment of the requirements for the degree of Doctor of Nursing Practice at Eastern Kentucky University. The purpose of the project was to increase knowledge about CRC. The Screen for Life Campaign quiz was utilized to assess change in knowledge using a pre-test/post-test design. A convenience sample of nine seniors participated in the educational program and completed the assessment. There was a significant increase in mean scores from pre- to post- test (p \u3c .007). This project supports the use of education to increase CRC knowledge

    Black hole-neutron star mergers: effects of the orientation of the black hole spin

    Get PDF
    The spin of black holes in black hole-neutron star (BHNS) binaries can have a strong influence on the merger dynamics and the postmerger state; a wide variety of spin magnitudes and orientations are expected to occur in nature. In this paper, we report the first simulations in full general relativity of BHNS mergers with misaligned black hole spin. We vary the spin magnitude from a/m=0 to a/m=0.9 for aligned cases, and we vary the misalignment angle from 0 to 80 degrees for a/m=0.5. We restrict our study to 3:1 mass ratio systems and use a simple Gamma-law equation of state. We find that the misalignment angle has a strong effect on the mass of the postmerger accretion disk, but only for angles greater than ~ 40 degrees. Although the disk mass varies significantly with spin magnitude and misalignment angle, we find that all disks have very similar lifetimes ~ 100ms. Their thermal and rotational profiles are also very similar. For a misaligned merger, the disk is tilted with respect to the final black hole's spin axis. This will cause the disk to precess, but on a timescale longer than the accretion time. In all cases, we find promising setups for gamma-ray burst production: the disks are hot, thick, and hyperaccreting, and a baryon-clear region exists above the black hole.Comment: 15 pages, 13 figure

    First-principles study of phase stability of Gd-doped EuO and EuS

    Get PDF
    Phase diagrams of isoelectronic Eu1−x_{1-x}Gdx_xO and Eu1−x_{1-x}Gdx_{x}S quasi-binary alloy systems are constructed using first-principles calculations combined with the standard cluster expansion approach and Monte-Carlo simulations. The oxide system has a wide miscibility gap on the Gd-rich side but forms ordered compounds on the Eu-rich side, exhibiting a deep asymmetric convex hull in the formation enthalpy diagram. The sulfide system has no stable compounds. The large difference in the formation enthalpies of the oxide and sulfide compounds is due to the contribution of local lattice relaxation, which is sensitive to the anion size. The solubility of Gd in both EuO and EuS is in the range of 10-20% at room temperature and quickly increases at higher temperatures, indicating that highly doped disordered solid solutions can be produced without the precipitation of secondary phases. We also predict that rocksalt GdO can be stabilized under appropriate experimental conditions.Comment: 14 pages, 6 figures (some with multiple panels), revtex4 with embedded ep

    Multiscale Modeling of Binary Polymer Mixtures: Scale Bridging in the Athermal and Thermal Regime

    Full text link
    Obtaining a rigorous and reliable method for linking computer simulations of polymer blends and composites at different length scales of interest is a highly desirable goal in soft matter physics. In this paper a multiscale modeling procedure is presented for the efficient calculation of the static structural properties of binary homopolymer blends. The procedure combines computer simulations of polymer chains on two different length scales, using a united atom representation for the finer structure and a highly coarse-grained approach on the meso-scale, where chains are represented as soft colloidal particles interacting through an effective potential. A method for combining the structural information by inverse mapping is discussed, allowing for the efficient calculation of partial correlation functions, which are compared with results from full united atom simulations. The structure of several polymer mixtures is obtained in an efficient manner for several mixtures in the homogeneous region of the phase diagram. The method is then extended to incorporate thermal fluctuations through an effective chi parameter. Since the approach is analytical, it is fully transferable to numerous systems.Comment: in press, 13 pages, 7 figures, 6 table

    A First Principle Approach to Rescale the Dynamics of Simulated Coarse-Grained Macromolecular Liquids

    Full text link
    We present a detailed derivation and testing of our approach to rescale the dynamics of mesoscale simulations of coarse-grained polymer melts (I. Y. Lyubimov et al. J. Chem. Phys. \textbf{132}, 11876, 2010). Starting from the first-principle Liouville equation and applying the Mori-Zwanzig projection operator technique, we derive the Generalized Langevin Equations (GLE) for the coarse-grained representations of the liquid. The chosen slow variables in the projection operators define the length scale of coarse graining. Each polymer is represented at two levels of coarse-graining: monomeric as a bead-and-spring model and molecular as a soft-colloid. In the long-time regime where the center-of-mass follows Brownian motion and the internal dynamics is completely relaxed, the two descriptions must be equivalent. By enforcing this formal relation we derive from the GLEs the analytical rescaling factors to be applied to dynamical data in the coarse-grained representation to recover the monomeric description. Change in entropy and change in friction are the two corrections to be accounted for to compensate the effects of coarse-graining on the polymer dynamics. The solution of the memory functions in the coarse-grained representations provides the dynamical rescaling of the friction coefficient. The calculation of the internal degrees of freedom provides the correction of the change in entropy due to coarse-graining. The resulting rescaling formalism is a function of the coarse-grained model and thermodynamic parameters of the system simulated. The rescaled dynamics obtained from mesoscale simulations of polyethylene, represented as soft colloidal particles, by applying our rescaling approach shows a good agreement with data of translational diffusion measured experimentally and from simulations. The proposed method is used to predict self-diffusion coefficients of new polyethylene samples.Comment: 21 pages, 6 figures, 6 tables. Submitted to Phys. Rev.

    End-to-end Molecular Communication Channels in Cell Metabolism: an Information Theoretic Study

    Get PDF
    The opportunity to control and fine-tune the behavior of biological cells is a fascinating possibility for many diverse disciplines, ranging from medicine and ecology, to chemical industry and space exploration. While synthetic biology is providing novel tools to reprogram cell behavior from their genetic code, many challenges need to be solved before it can become a true engineering discipline, such as reliability, safety assurance, reproducibility and stability. This paper aims to understand the limits in the controllability of the behavior of a natural (non-engineered) biological cell. In particular, the focus is on cell metabolism, and its natural regulation mechanisms, and their ability to react and change according to the chemical characteristics of the external environment. To understand the aforementioned limits of this ability, molecular communication is used to abstract biological cells into a series of channels that propagate information on the chemical composition of the extracellular environment to the cell’s behavior in terms of uptake and consumption of chemical compounds, and growth rate. This provides an information-theoretic framework to analyze the upper bound limit to the capacity of these channels to propagate information, which is based on a well-known and computationally efficient metabolic simulation technique. A numerical study is performed on two human gut microbes, where the upper bound is estimated for different environmental compounds, showing there is a potential for future practical applications

    Review: The Newsletter of the Literary Managers and Dramaturgs of the Americas, volume 13, issue 2

    Get PDF
    Contents include: On Borders, LMDA Conference 2003 Turgs in the Hood, Reading Between the Lines, Acting Locally: The Lysistrata Project, and Regional Updates News and Info from Each LMDA Region. Issue editors: D.J. Hopkins, Shelley Orr, Liz Engelman, Madeline Oldham, Jacob Zimmer.https://soundideas.pugetsound.edu/lmdareview/1027/thumbnail.jp

    Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories

    Full text link
    Using lattice simulations, we study the extent of the conformal window for an SU(3) gauge theory with N_f Dirac fermions in the fundamental representation. We extend our recently reported work, describing the general framework and the lattice simulations in more detail. We find that the theory is conformal in the infrared for N_f = 12, governed by an infrared fixed point, whereas the N_f = 8 theory exhibits confinement and chiral symmetry breaking. We therefore conclude that the low end of the conformal window N_f^c lies in the range 8 <= N_f^c <= 12. We discuss open questions and the potential relevance of the present work to physics beyond the standard model.Comment: 37 pages, 7 figures. v2: assorted minor updates and correction

    Metabolic Synergy between Human Symbionts \u3ci\u3eBacteroides\u3c/i\u3e and \u3ci\u3eMethanobrevibacter\u3c/i\u3e

    Get PDF
    ABSTRACT Trophic interactions between microbes are postulated to determine whether a host microbiome is healthy or causes predisposition to disease. Two abundant taxa, the Gram-negative heterotrophic bacterium Bacteroides thetaiotaomicron and the methanogenic archaeon Methanobrevibacter smithii, are proposed to have a synergistic metabolic relationship. Both organisms play vital roles in human gut health; B. thetaiotaomicron assists the host by fermenting dietary polysaccharides, whereas M. smithii consumes end-stage fermentation products and is hypothesized to relieve feedback inhibition of upstream microbes such as B. thetaiotaomicron. To study their metabolic interactions, we defined and optimized a coculture system and used software testing techniques to analyze growth under a range of conditions representing the nutrient environment of the host. We verify that B. thetaiotaomicron fermentation products are sufficient for M. smithii growth and that accumulation of fermentation products alters secretion of metabolites by B. thetaiotaomicron to benefit M. smithii. Studies suggest that B. thetaiotaomicron metabolic efficiency is greater in the absence of fermentation products or in the presence of M. smithii. Under certain conditions, B. thetaiotaomicron and M. smithii form interspecies granules consistent with behavior observed for syntrophic partnerships between microbes in soil or sediment enrichments and anaerobic digesters. Furthermore, when vitamin B12, hematin, and hydrogen gas are abundant, coculture growth is greater than the sum of growth observed for monocultures, suggesting that both organisms benefit from a synergistic mutual metabolic relationship. IMPORTANCE The human gut functions through a complex system of interactions between the host human tissue and the microbes which inhabit it. These diverse interactions are difficult to model or examine under controlled laboratory conditions. We studied the interactions between two dominant human gut microbes, B. thetaiotaomicron and M. smithii, using a seven-component culturing approach that allows the systematic examination of the metabolic complexity of this binary microbial system. By combining high-throughput methods with machine learning techniques, we were able to investigate the interactions between two dominant genera of the gut microbiome in a wide variety of environmental conditions. Our approach can be broadly applied to studying microbial interactions and may be extended to evaluate and curate computational metabolic models. The software tools developed for this study are available as user-friendly tutorials in the Department of Energy KBase
    • …
    corecore