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ABSTRACT

The opportunity to control and fine-tune the behavior of biolog-

ical cells is a fascinating possibility for many diverse disciplines,

ranging from medicine and ecology, to chemical industry and space

exploration. While synthetic biology is providing novel tools to

reprogram cell behavior from their genetic code, many challenges

need to be solved before it can become a true engineering dis-

cipline, such as reliability, safety assurance, reproducibility and

stability. This paper aims to understand the limits in the control-

lability of the behavior of a natural (non-engineered) biological

cell. In particular, the focus is on cell metabolism, and its natural

regulation mechanisms, and their ability to react and change ac-

cording to the chemical characteristics of the external environment.

To understand the aforementioned limits of this ability, molecular

communication is used to abstract biological cells into a series of

channels that propagate information on the chemical composition

of the extracellular environment to the cell’s behavior in terms of

uptake and consumption of chemical compounds, and growth rate.

This provides an information-theoretic framework to analyze the

upper bound limit to the capacity of these channels to propagate

information, which is based on a well-known and computation-

ally efficient metabolic simulation technique. A numerical study is

performed on two human gut microbes, where the upper bound is

estimated for different environmental compounds, showing there

is a potential for future practical applications.
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1 INTRODUCTION

Biological cells are the essential building blocks of life, and their

biochemical behavior, e.g., how they consume nutrients, grow, re-

produce, and secrete byproducts, shapes our life and our planet

as we know it [13]. The possibility to control and fine tune cell

behavior is one of the main objectives of not only life sciences, but

also engineering and technology. Existing research has focused on

several different techniques to realize this control, such as the use

of light, i.e., optogenetics [19], and magnetic fields, i.e., magnetic

nanoparticles [6]. At the cutting edge of this research stands syn-

thetic biology, which provides tools to access the information flow

inside cells by reprogramming DNA code [19]. Synthetic Biology

techniques have a major drawback, namely, they necessitate the

artificial modification of cells through addition of components (e.g.,

magnetic nanoparticles) and/or synthetic genetic code, with the risk

of impacting the natural cell functionalities and behaviors, often in

unpredictable ways [5, 6].

In this paper, we advocate for an alternative solution based on

the utilization of the natural mechanisms involved in the regulation

of the cell’s internal functionalities, i.e., its metabolism, to realize

the aforementioned goal. In particular, through these mechanisms,

cells naturally adapt their biochemical behavior as a function of

the chemical characteristics of the external environment, in the

direction of maximum fitness to procure energy from the environ-

ment, grow, and reproduce [11]. While it is clear that by carefully

tuning determinate characteristics of the environments where cells

live, we have the ability to induce a specific behavior in a natural

(non-engineered) cell, it is of utmost importance to understand the

limits of this controllability.

Molecular Communication (MC), a recently developed discipline

that studies systems where the exchange of information is real-

ized through molecules and chemical reactions [1], is proposed

in this paper as a tool to estimate the aforementioned limits. In

particular, we abstract cell metabolism and its regulation as an
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Figure 1: Schematic representation of cell metabolism and

the regulation mechanisms considered in this paper.

end-to-end MC system, where information on the chemical compo-

sition of the external environment (transmitter in the end-to-end

abstraction) is transmitted through a series of communication chan-

nels to determinate states in the cell’s metabolism, and from these

states to a specific behavior of the cell in terms of growth rate,

and uptake and consumption of the chemical compounds in the

environment (receiver in the end-to-end abstraction). On the basis

of this abstraction, we apply information-theoretic tools to estimate

an upper bound limit in terms of amount of information that can be

channeled through this system. Thanks to a well-known and com-

putationally efficient metabolic modeling and simulation technique,

we are able to calculate this estimate from the knowledge of the

cell DNA code, i.e., genome, and the selection of the environmental

factors that are under our control.

In prior work [15], we proposed a very first MC abstraction

limited to a single communication channel that underlies the prop-

agation of chemical information from the external environment to

an internal cell metabolic state, and we derived proof-of-concept

information-theoretic limits of this channel for a standard set of

metabolic states in an E. coli organism. These theoretical limits

were accounting for the amount of information that the cell is able

to absorb from the environment, but not for the resulting changes

in the cell’s behavior. In this new contribution, we abstract the com-

plete series of channels that account for how the environmental

chemical information is affecting the external metabolic behavior

of the cell, i.e., the way the cell interacts with the environment,

similarly to a complete transmitter-receiver system (end-to-end). In

addition, to suggest a direct application of our study to real world

problems, our new numerical results on the theoretical limits of

these channels are now based on two main important human gut

microbes [17], whose behavior has been linked to nutrition-related

disorders such as obesity [10]. We also demonstrate that differ-

ent compounds in the environment are associated with different

amounts of information propagated by the end-to-end system.

The rest of this paper is organized as follows. In Section 2 we

review basic concepts in the cell metabolism and its regulation, and

present the end-to-end (E2E)MC system abstraction. In Section 3we

detail the information theoretic study to characterize this system

in term so of steady-state mutual information. In Section 4 we

discuss the data generation and relevant numerical results for the

gut bacterium B. theta and archaeon M. smithii. The final section

covers the conclusion and details of future avenues.

2 E2E MOLECULAR COMMUNICATION
ABSTRACTION OF CELL METABOLISM

Cell metabolism is the set of chemical reactions responsible for

the conversion of chemical compounds taken up from the envi-

ronment into energy, cell building blocks, i.e., biomass, and waste,

for cell homeostasis, growth, and reproduction [13], as schemat-

ically shown in Fig. 1. We present some background material de-

scribed in [15]. These chemical reactions, which transform reac-

tant molecules into product molecules (A, B, C,... in Fig. 1), and

are chained together into a complex metabolic network, are gen-

erally not spontaneous, but happen (are catalyzed) when in the

presence of particular enzymes, which are special proteins syn-

thesized (expressed) from genes written in the cells’ DNA. Cells

have the ability to control the rate of enzyme expression, therefore

controlling the rate of the corresponding metabolic reactions, or

flux, in transforming reactants into products. In particular, this

control is operated by transcription factors, which are proteins

that change their state between inactive [TF] and active [TF*] in

function of environmental conditions (e.g., presence of determinate

chemical compounds in the extracellular environment) through a

biochemical process named signal transduction. Depending on the

particular transcription factor, a gene can be up-regulated (activa-

tion), therefore expressing the enzyme at a higher rate, or otherwise

down-regulated (repression), which impacts the resulting metabolic

flux of the corresponding catalyzed chemical reaction. In this paper,

we consider a commonly accepted model of gene regulation, accord-

ing to a logical approximation [2], where the relation between an

enzyme-regulated metabolic reaction ri and an active transcription
factor [TF ∗] is represented by one of the following two expressions:

ri � βH
(
[TF ∗] − Kd

)
if activation , (1)

ri � βH
(
Kd − [TF ∗]

)
if repression ;

where β is the maximum expression level of the enzyme express-

ing [TF ], H (.) is the Heaviside step function, equal to 1 when the
argument is positive, and 0 otherwise, andKd is the equilibrium con-

stant of the reaction [18]. According to the logical approximation

in (1), the enzyme expression, and the activity of the corresponding

chemical reaction within the cell metabolism, can be either ON

(= maximum enzyme expression rate and corresponding rate of

the reaction) or OFF (= no expressed enzyme and absence of the

corresponding chemical reaction in the cell metabolism) depending

on the quantity of specific chemical compounds in the cell.

We abstract the aforementioned mechanisms underlying cell me-

tabolism as an E2E MC system, as shown in Fig. 2, where through

an information-centric approach. In our abstraction, we study the

potential of cell metabolism and its regulation to propagate infor-

mation from the external environment through the regulation of

enzyme expression and the flux of metabolic reactions, resulting

in the control of specific characteristics of cell’s behavior, namely,

the rate of uptake/secretion of chemical compounds to/from the

environment and the rate of growth. In particular, with reference

to Fig. 2, the proposed E2E MC system abstraction is composed of a

series of two channels, namely, the Enzyme Expression Regula-

tion Channel and theMetabolic Reaction Network Channel.

2



c1
c2

c3

Input

Chemical compound 1
Chemical compound 2
Chemical compound 3
Chemical compound 4

r1=1

r3=1

r2=1
r4=1

r5=0

rM=0

r7=1

r8=1

rN=1

Biological Cell

[c1…N]
J1…N

r1=1

r3=1

r2=1
r4=1

r5=0

rM=0

r7=1

r8=1

rN=1

U1…T

S1…JBiomass Growth
/ No Growth

Output

SSSSSS

Stage II

Stage I

c1 c2 c3 cN. . .

Transmitted Signal Channel Received Signal

r1 r2 r3 rM. . .Enzyme Expression 
Regulation 

U1… , S1… , Gr, SJ

Transmitted Signal

Metabolic 
Reactions

Received SignalChannel

UT

Figure 2: The proposed end-to-end molecular communica-

tion abstraction of cell metabolism.

When considering theEnzymeExpressionRegulationChan-

nel, identified as Stage I in Fig. 2, the transmitter abstracts the

environment surrounding the cell, where the transmitted signal is

the set of chemical compounds present in the environment that are

input of the pathways that compose the cell metabolic network, the

channel represents the mechanisms that regulate the expression

of determinate enzymes as a function of the chemical compounds

in input, and the receiver represents the cell metabolism, where

the received signal is the resulting ON/OFF activity of the chemical

reactions catalyzed by these enzymes. This abstraction is more for-

mally expressed as {c1, c2, ...cN }
Enzyme Expression−−−−−−−−−−−−−−−−→

Regulation
{r1, r2, ...rM },

where N is the number of chemical compounds present in the envi-

ronment surrounding the cell and input of the metabolic pathway

network, ci is the concentration (number of molecules per unit

volume) of the chemical compound i = 1, ...N , ri is a binary value
equal to 1 if the enzyme-expression-regulated reaction i is ON, and
equal to 0 if the same reaction is OFF, as expressed in (1), M is

the number of enzyme-expression-regulated reactions that change

their state upon variations in the concentrations of input chemi-

cal compounds ci , i = 1, ...N . A proof-of-concept analysis of this

channel for E. coli cells is included in our previous publication [15].

When considering the Metabolic Reaction Network Chan-

nel, (Stage II in Fig. 2), the transmitter represents the cell itself,

where the transmitted signal is the metabolic state of the cell,

namely, theON/OFF activity of the state-changing enzyme-regulated

reactions. The channel represents mechanisms involved in the ON

metabolic reactions that impact the consumption and production

of chemical compounds within the cell. The receiver represents the

cell’s environment, where the received signal is the variation in

the uptake and secretion of compound(s) from/to the environment

itself, and the cell growth in terms of biomass production, respec-

tively. This is more formally expressed as {r1, r2, ...rM } Metabolic−−−−−−−−→
Reactions{

U1, ...UT , S1, ....,S J ,Gr
}
, whereU1...UT are the fluxes, i.e., the ve-

locity of molecule concentration propagating in space (e.g., from

environment to cell), of metabolites taken up from the environ-

ment, S1...S J are the fluxes of metabolites secreted by the cell into

its environment, and Growth (Gr) represents the flux of produced

compounds inside the cell that contribute to its growth (biomass).

In the rest of the paper, we detail an information-theoretic study

to quantify the information flow in the E2E MC system. For this,

we consider the model of Stage I from our previous work [15] along

with the newly proposed Stage II model. Although the aforemen-

tioned biological processes are realized in nature by the interplay

of signal transduction, gene regulation and cell metabolism, the in-

teractions among these different mechanisms are still only partially

understood [8]. This is especially true for the organisms consider,

namely, the B. theta and the M. smithii. As a consequence, the

study in this paper is based on a black-box abstraction of signal

transduction and gene regulation, and focuses on the mechanisms

underlying chemical reactions and their fluxes in cell metabolism.

3 INFORMATION-THEORETIC STUDY OF
THE E2E MC METABOLIC CHANNELS

To quantify the potential of cell metabolism and its regulation to be

utilized to control cell behavior, we define the steady-state mutual

information I of the two stages of the aforementioned MC abstrac-

tion, as well as for the overall E2E MC system. In particular, we

consider the steady-state case since our methodology is currently

based on constraint-based approach, the Flux Balance Analysis

(FBA), as explained later in the section, which estimates the optimal

cell metabolic state and chemical reaction fluxes without taking into

account the dynamic behavior of the enzyme expression regulation

or the metabolic reaction network. As detailed later in and in [15],

the use of FBA data in our expressions results in the computation

of an upper-bound of the mutual information.

The steady-state mutual information I of Stage I quantifies the
amount of information about the chemical composition of the cell’s

environment measured in bits that a cell is able to represent in

the binary state of its enzyme-expression-regulated metabolic reac-

tions at steady state, after any evolution of the enzyme-expression

regulation channel. As detailed in [15], the steady-state mutual

information for Stage I is defined as follows:

I ({ci }Ni=1 ; {ri }Mi=1) = H ({ci }Ni=1) − H ({ci }Ni=1 | {ri }Mi=1) , (2)

where the expressions for the input entropyH ({ci }Ni=1) and the con-
ditional entropy of the input given the output H ({ci }Ni=1 | {ri }Mi=1)
can be found in [15].

The steady-state mutual information I for the Stage II quantifies
the amount of information contained in the internal binary cell

metabolic state that can be perceived from the outside environ-

ment through the metabolic-state-modulated values of the fluxes of

metabolites taken up or secreted, and biomass (growth), after any

evolution in time of the fluxes of consumed or produced metabolites

accounting the rate of metabolic reactions to be negligible with

respect to cell growth. We defined this as

I ({ri }Mi=1 ; {Ut }Tt=1 ,
{
Sj
} J
j=1
,Gr ) = (3)

H (({ri }Mi=1) − H ({ri }Mi=1 | {Ut }Tt=1 ,
{
Sj
} J
j=1
,Gr ) ,

where the input entropy H ({ri }Mi=1) is defined as

H ({ri }Mi=1) = −
K∑
k=1

P
({
rik

}M
i=1

)
log2 P

({
rik

}M
i=1

)
, (4)

3



whereK is equal to the total number of different combinations of bi-

nary values of the enzyme-expression-regulated chemical reactions

at the output of the system
[
{ri }Mi=1

]
k
resulting from the all the

possible values that the input chemical compound concentrations

{ci }Ni=1 can assume, and P (.) is their probability distribution.
The conditional entropy of the input given the outputH ({ri }Mi=1 |

{Ut }Tt=1
{
Sj
} J
j=1
,Gr ) is then defined as follows:

H ({ri }Mi=1 | {Ut }Tt=1 ,
{
Sj
} J
j=1
,Gr) = (5)

−
Q∑
q=1

P

( [
{Ut }Tt=1 ,

{
Sj
} J
j=1
,Gr

]
q

)

K∑
k=1

P

({
rik

}M
i=1

�����
[
{Ut }Tt=1 ,

{
Sj
} J
j=1
,Gr

]
q

)

log2 P

({
rik

}M
i=1

�����
[
{Ut }Tt=1 ,

{
Sj
} J
j=1
,Gr

]
q

)
;

where Q is equal to the total number of different sets of flux values

at the output of the system {Ui }ti=1 , {Si }ji=1 ,Growth (Gr) result-

ing from different combinations of the the enzyme-expression-

regulated reactions, and P (.) is their probability distribution [16].
To provide an in silico evaluation of the expressions in (2) and (3)

for a specific cell, we make use of the aforementioned FBA, which is

a well-known and computationally efficient mathematical method

that allows us to simulate cell metabolism and its regulation through

linear optimization techniques given the cell’s genetic code (genome)

and determinate constraints [14]. Through FBA we estimate the

chemical reactions that might be active in cell metabolism given

the set of compounds (and their concentration and maximum flux)

present in the environment [3, 14]. In particular, through FBA we

are able to obtain an estimate of the state
{
r∗i
}M
i=1

of the enzyme-

expression-regulated chemical reactions that results into an overall

maximum biomass production, and the consequent flux values of

the metabolic reactions in the cell, including those at the output, i.e.,{
U ∗i

}t
i=1
,
{
S∗i
} j
i=1
, (Gr)∗. Further details about the theory behind

FBA and the step-by-step estimation are detailed in [15].

Given the optimal estimates of the chemical reaction states{
r∗i
}M
i=1

obtained through the FBA from the knowledge of the cell’s

genome for all the values that our input set of chemical compound

concentrations {ci }Ni=1 can assume, we can compute the following
upper bound steady-state mutual information for Stage I [15]:

I ({ci }Ni=1 ;
{
r∗i
}M
i=1

) = H ({ci }Ni=1) − H ({ci }Ni=1 |
{
r∗i
}M
i=1

) , (6)

The relation between steady state mutual information and its upper

bound can be formalized as follows [15]:

I ({ci }Ni=1 ;
{
r∗i
}M
i=1

) ≥ I ({ci }Ni=1 ; {ri }Mi=1), (7)

Consequently, we compute the steady-state mutual information

for Stage II with the values of the chemical reaction states and flux

values at the output of the system as follows:

I (
{
r∗i
}M
i=1

;
{
U ∗t
}T
t=1 ,

{
S∗j
} J
j=1
,Gr∗) , (8)

Finally, the upper bound to the E2E steady-state mutual informa-

tion I ({ci }Ni=1 ;
{
U ∗t

}T
t=1
,
{
S∗j
} J
j=1
,Gr∗) is computed through (4) by

substituting {ri }Mi=1 with {ci }Ni=1 and summation with integration,
and the expression in (5) with the same variable substitution, and

the second summation with integration.

4 DATA GENERATION AND NUMERICAL
RESULTS

In this section, we present a numerical example of the information-

theoretic study of the information flow in the E2E MC abstraction

of cell metabolism proposed in this paper. This example is based

on two microbial organisms present in the human gut, namely, the

B. theta bacterium and M. smithii archeon, which are the subject

of cutting-edge experimental research by co-authors of this paper

and by others [12, 17]. The control of the metabolic behavior of

these organisms has particular significance since changes in the

abundance of intestinal B. theta and M. smithii have been linked to

nutrition-related disorders such as obesity [10]. In recent work [4],

we examined the correlation between changes in the growth of

these organisms and the chemical composition of the environment

with sampling and inference techniques from software testing, but

without the communication-centric abstraction of the underlying

biochemical processes presented in this paper.

Through the quantification of the information flow for these two

organisms, we can infer how variations in the chemical composi-

tion of the environment can impact their metabolic behavior. In the

following, we demonstrate that this study can lead to a ranking of

chemical compounds on the basis of how much mutual information

through the E2E MC system can result from their variation. This can

potentially lead to the reduction in the number of expensive experi-

ments by reducing the different combinations of chemical compounds

necessary to obtain and study determinate metabolic behaviors of

these organisms and emergent behaviors from their metabolic inter-

actions, which might be associated with dysbiosis. In the long run, by

quantifying their metabolic controllability through our framework,

wemay enhance knowledge of how organisms and the environment

interact through genomic information to produce cell behaviors

that ultimately have an impact on human health.

To generate data on the metabolism of the aforementioned or-

ganisms, we utilize a bioinformatics modeling pipeline and the

implementation of the FBA algorithm within KBase (Department

of Energy Systems Biology Knowledgebase) software application

suite [9]. Given the B. theta andM. smithii genomes [7, 20], and the

concentrations of compounds in the environment, we undergo a

series of steps where the genome is used to construct a Genome

Scale Metabolic (GEM) model, which is then at the base of the FBA

optimization algorithm to estimate the resulting biomass, uptake,

secretion, and all the optimized reactions in the organism pertain-

ing to the known genome as in Fig. 3. We then use code that we

developed in Matlab and Python to analyze the results and com-

pute the expressions presented in Section 3. We provide a detailed

description of this procedure in [15], where we generate data to

study the Stage I of the MC system for the E. coli bacterium.

The Stage I upper-bound of the steady state mutual informa-

tion of B. theta and M. smithii was computed by using 128 binary

combinations (present/not present) of seven input compounds, i.e.,

4



Figure 3: KBase workflow to generate in silico data.
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Figure 4: (left)-variations in state changing reactions for 128 input

combinations for B. theta. (right)-variations in state changing reac-

tions for 128 input combinations for M. smithii

Carbon-D-Glucose (G), Hematin (He), Formate (F), H2, Vitamin B12
(B12), Acetate (A), and Vitamin K (Vk ). In this paper, we limited

the possible input compounds to seven in order to obtain a ground

truth for our study as it is a resource limiting factor if we want

to move the experiments to an in vitro environment in the future.

The results obtained for Stage I for B. theta and M. smithii are

shown in Fig. 4, where the state-changing metabolic reactions in

the B. theta and M. smithii, respectively, are set to ON (yellow)

or OFF (blue) according to the FBA-estimated chemical reaction

state, for each of the aforementioned 128 binary input flux com-

binations. Based on these data, we obtain the upper-bound of the

steady-state mutual information of the B. theta Stage I using (6):

I
({
cG , cHe , cF , cH2

, cB12 , cA, cVk
}}
;
{
r∗i
}113
i=1

) = 3.3 bits. Similarly,

we compute the upper-bound of the steady-state mutual informa-

tion of the M. smithii Stage I, resulting in 4.5 bits. More details of

these calculations are presented in [16].
{
r∗i
}113
i=1

and
{
r∗i
}136
i=1

repre-

sent upper-bound enzyme-expression regulated unique chemical

reactions for B. theta and M. smithii respective, derived from Fig. 4

(left) and Fig. 4 (right). These values represent an estimate of the

maximum information that the each cell’s metabolism can absorb

from the chemical compounds present in the environment.

In Stage II we applied our method to compute the potential of

each organism to translate changes in the internal metabolic state

into differences in its interactions with the environment. To do this,

we grouped the FBAs based on the similar FBA-estimated chemical

reaction states, giving us 14 groups for B. theta and 31 groups forM.

smithii. We first compute the upper bound of the steady-state mu-

tual information over internal metabolic state changing reactions

with respect to biomass only, resulting in 2.8 bits for B. theta and

3.8 bits for M. smithii, respectively. These values represent an esti-

mate of the information that can flow from the state of themetabolic

reactions to the output, and quantifies the controllability of these

organisms in terms of rate of growth (or biomass). Furthermore,

we compute the upper bound of steady-state mutual information

over internal metabolic state changing reactions with respect to up-

take and secretion of compounds and biomass, resulting in 3.7 bits

and 3.9 bits for B. theta and M. smithii respectively. These values

quantify the same information flow estimate, this time related to

the joint controllability of the organisms in terms of rate of growth

(biomass) and fluxes of compounds secreted or taken up.

The upper bound of the steady-state mutual information of the

overall E2E MC system, from the input environmental compounds

to the compound uptake/secretion and biomass, resulted in 2.7 bits

for B. theta and 2.6 bits for M. smithii, respectively. These values

represent an estimate of the information flow from the two afore-

mentionedMC channels in cell metabolism, and quantify the overall

maximum controllability of these organisms in terms of growth

and uptake/secretion of compounds that can be operated from the

external environment by a tuning the chemical composition (each

of the 7 chemical compound as present/not present) of the environ-

ment. Stage II values are computed using (8). A summary of all the

calculations is presented in Table 1.

Figure 5: Upper bound to the steady-state mutual informa-

tion of B. theta, one input compound vs. 7 compounds.

Figure 6: Same as in Fig. 5 for M. smithii.

To demonstrate an immediate practical application of the study

presented in this paper, we show in Fig. 5 and Fig. 6 the calculation

of the upper bound to the steady-state mutual information in the

case where we can control the presence/no presence of only one in-

put compound at a time in the environment, while the presence/no

presence of other compounds is unknown. This calculation is per-

formed for each of the seven compounds for Stage I, Stage II (with
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Table 1: Summary of the Upper Bound of the Steady-State

Mutual Information (UBSSMI) presented in this paper.

output biomass only or biomass+uptake+secretion), and the E2E

system. All these values are compared with the aforementioned

values where the presence/absence can be controlled for all the 7

input compounds. Fig. 5 and Fig. 6 reveal that it is possible to rank

the input chemical compounds on the basis of how much mutual

information can result from their variation for the different stages

in B. theta andM. smithii, respectively. As a consequence, we notice

that Hematin and Glucose for B. theta and Hematin, Glucose, and

Formate for M. smithii are compounds that maximally affect the

metabolic behavior of each organism, and in these cases particu-

larly affect their biomass production rates, since the inclusion of

uptake or secretion as additional output does not affect the mutual

information values. As mentioned above, the E2E MC approach

is consistent with results obtained from BioSIMP [4], which used

software testing methods to identify the environmental nutritional

factors required for growth of B. theta and M. smithii. The E2E MC

method predicts a range of 2.6-4.5 bits of molecular information

that can be transmitted and received for each cell, which agrees

with the BioSIMP prediction of 3-5 factor sampling to cover 90% of

the possible metabolic states of the cell.

5 CONCLUSIONS

In this paper, we have proposed amethodology to quantify the limits

in the controllability of the metabolic behavior of a natural (non-

engineered) biological cell by varying the chemical composition of

its environment, where this behavior is represented by the rates

of cell’s growth, consumption of chemical compounds from the

environment, and secretion of metabolic byproducts. This method-

ology is based on the abstraction of molecular communication and

mathematical tools from information theory. In particular, we have

abstracted cell metabolism, and its regulation, as an E2E communi-

cation system where information about the chemical composition

of the environment is propagated by a sequence of two channels,

namely, the enzyme expression regulation and the metabolic reac-

tion network. Through the parameter of mutual information we

have quantified the limits of these channels in terms of amount of

information that they can propagate, as well as for the E2E system.

We have applied our methodology to two important microorgan-

isms present in the human gut, whose behavior has been liked to

obesity. Our results demonstrate that different chemical compounds

present in the environment are associated with different amounts

of information propagated through the aforementioned channels,

and therefore their variations result in different consequences on

cell behavior. In future work we plan to realize a complete com-

munication model of these channels, by taking into account their

dynamic behaviors and associated noise.
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