345 research outputs found

    CARATTERIZZAZIONE ACUSTICA DI NANOBOLLE LIPIDICHE

    Get PDF
    Vengono riportate misure riguardo l’efficienza di scattering di nanobolle lipidiche con diametro medio di 200 nm contenenti tetradecafluoroesano; le misure, effettuate con la tecnica pulse-echo, rivelano un’attenuazione dipendente dalla concentrazione in soluzione delle nanobolle con valori che, per una concentrazione del 35% di nanobolle in hepes, raggiungono, a 14 MHz, il valore di circa 6 dB/cm. Tale valore è confrontabile con le attenuazioni prodotte da agenti di contrasto commercialmente disponibili come, ad esempio, il SonoVue®. È stata inoltre utilizzata una tecnica fotoacustica per la valutazione dell’efficacia di intrappolamento del gas all’interno delle nanobolle, riscontrando, anche in questo caso, valori simili a quelli misurati nel SonoVue®

    Surfactants, nanomedicines and nanocarriers: a critical evaluation on clinical trials

    Get PDF
    Advances, perspectives and innovation in drug delivery have increased in recent years; however, there is limited information available regarding the actual presence of surfactants, nanomed-icines and nanocarriers in investigational medicinal products submitted as part of a request for authorization of clinical trials, particularly for those authorized in the European Economic Area. We retrieve, analyze and report data available at the Clinical Trial Office of the Italian Medicines Agency (AIFA), increasing the transparency and availability of relevant information. An analysis of quality documentation submitted along with clinical trials authorized by the AIFA in 2018 was carried out, focusing on the key terms “surfactant”, “nanomedicine” and “nanocarrier”. Results suggest potential indications and inputs for further reflection and actions for regulators to actively and safely drive innovation from a regulatory perspective and to transpose upcoming evolution of clinical trials within a strong regulatory framework

    Decoration of nanovesicles with pH (low) insertion peptide (pHLIP) for targeted delivery

    Get PDF
    Acidity at surface of cancer cells is a hallmark of tumor microenvironments, which does not depend on tumor perfusion, thus it may serve as a general biomarker for targeting tumor cells. We used the pH (low) insertion peptide (pHLIP) for decoration of liposomes and niosomes. pHLIP senses pH at the surface of cancer cells and inserts into the membrane of targeted cells, and brings nanomaterial to close proximity of cellular membrane. DMPC liposomes and Tween 20 or Span 20 niosomes with and without pHLIP in their coating were fully characterized in order to obtain fundamental understanding on nanocarrier features and facilitate the rational design of acidity sensitive nanovectors. The samples stability over time and in presence of serum was demonstrated. The size, ζ-potential, and morphology of nanovectors, as well as their ability to entrap a hydrophilic probe and modulate its release were investigated. pHLIP decorated vesicles could be useful to obtain a prolonged (modified) release of biological active substances for targeting tumors and other acidic diseased tissues

    RIP1-HAT1-SirT complex identification and targeting in treatment and prevention of cancer

    Get PDF
    Purpose: Alteration in cell death is a hallmark of cancer. A functional role regulating survival, apoptosis, and necroptosis has been attributed to RIP1/3 complexes.Experimental Design: We have investigated the role of RIP1 and the effects of MC2494 in cell death induction, using different methods as flow cytometry, transcriptome analysis, immunoprecipitation, enzymatic assays, transfections, mutagenesis, and in vivo studies with different mice models.Results: Here, we show that RIP1 is highly expressed in cancer, and we define a novel RIP1/3-SIRT1/2-HAT1/4 complex. Mass spectrometry identified five acetylations in the kinase and death domain of RIP1. The novel characterized pan-SIRT inhibitor, MC2494, increases RIP1 acetylation at two additional sites in the death domain. Mutagenesis of the acetylated lysine decreases RIP1-dependent cell death, suggesting a role for acetylation of the RIP1 complex in cell death modulation. Accordingly, MC2494 displays tumor-selective potential in vitro, in leukemic blasts ex vivo, and in vivo in both xenograft and allograft cancer models. Mechanistically, MC2494 induces bona fide tumor-restricted acetylated RIP1/caspase-8-mediated apoptosis. Excitingly, MC2494 displays tumor-preventive activity by blocking 7,12-dimethylbenz(α)anthracene-induced mammary gland hyperproliferation in vivoConclusions: These preventive features might prove useful in patients who may benefit from a recurrence-preventive approach with low toxicity during follow-up phases and in cases of established cancer predisposition. Thus, targeting the newly identified RIP1 complex may represent an attractive novel paradigm in cancer treatment and prevention

    Factors Determining the Superior Performance of Lipid/DNA/Protammine Nanoparticles over Lipoplexes.

    Get PDF
    The utility of using a protammine/DNA complex coated with a lipid envelope made of cationic 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) for transfecting CHO (Chinese hamster ovary cells), HEK293 (human embryonic kidney cells), NIH 3T3 (mouse embryonal cells), and A17 (murine cancer cells) cells was examined. The widely used DOTAP/DNA lipoplex was employed as a reference. In all the tested cell lines lipid/protamine/DNA (LPD) nanoparticles were more e!cient in transfecting cells than lipoplexes even though the lipid composition of the lipid envelope was the same in both devices. Physical!chemical properties were found to control the ability of nanocarriers to release DNA upon interaction with cellular membranes. LPD complexes easily release their DNA payload, while lipoplexes remain largely intact and accumulate at the cell nucleus. Collectively, these data explain why LPD nanoparticles often exhibit superior performances compared to lipoplexes in trasfecting cells and represent a promising class of nanocarriers for gene delivery
    corecore