1,793 research outputs found

    Geologic considerations in underground coal mining system design

    Get PDF
    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucy is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach

    Homogenization of weakly coupled systems of Hamilton--Jacobi equations with fast switching rates

    Full text link
    We consider homogenization for weakly coupled systems of Hamilton--Jacobi equations with fast switching rates. The fast switching rate terms force the solutions converge to the same limit, which is a solution of the effective equation. We discover the appearance of the initial layers, which appear naturally when we consider the systems with different initial data and analyze them rigorously. In particular, we obtain matched asymptotic solutions of the systems and rate of convergence. We also investigate properties of the effective Hamiltonian of weakly coupled systems and show some examples which do not appear in the context of single equations.Comment: final version, to appear in Arch. Ration. Mech. Ana

    A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow

    Get PDF
    In this paper we present a Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corresponds to a system of a conservation law for the pedestrian density and an Eikonal equation to determine the weighted distance to the exit. We consider this model in presence of small diffusion and discuss the numerical analysis of the proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small diffusion on the exit time with various numerical experiments

    Genes Contributing to Staphylococcus aureus Fitness in Abscess- and Infection-Related Ecologies

    Get PDF
    ABSTRACT Staphylococcus aureus is a leading cause of both community- and hospital-acquired infections that are increasingly antibiotic resistant. The emergence of S. aureus resistance to even last-line antibiotics heightens the need for the development of new drugs with novel targets. We generated a highly saturated transposon insertion mutant library in the genome of S. aureus and used Tn-seq analysis to probe the entire genome, with unprecedented resolution and sensitivity, for genes of importance in infection. We further identified genes contributing to fitness in various infected compartments (blood and ocular fluids) and compared them to genes required for growth in rich medium. This resulted in the identification of 426 genes that were important for S. aureus fitness during growth in infection models, including 71 genes that could be considered essential for survival specifically during infection. These findings highlight novel as well as previously known genes encoding virulence traits and metabolic pathways important for S. aureus proliferation at sites of infection, which may represent new therapeutic targets

    Existence and regularity results for viscous Hamilton–Jacobi equations with Caputo time-fractional derivative

    Get PDF
    We study existence, uniqueness and regularity properties of classical solutions to viscous Hamilton–Jacobi equations with Caputo time-fractional derivative. Our study relies on a combination of a gradient bound for the time-fractional Hamilton–Jacobi equation obtained via nonlinear adjoint method and sharp estimates in Sobolev and Hölder spaces for the corresponding linear problem

    Nanopods: A New Bacterial Structure and Mechanism for Deployment of Outer Membrane Vesicles

    Get PDF
    Background: Bacterial outer membrane vesicles (OMV) are packets of periplasmic material that, via the proteins and other molecules they contain, project metabolic function into the environment. While OMV production is widespread in proteobacteria, they have been extensively studied only in pathogens, which inhabit fully hydrated environments. However, many (arguably most) bacterial habitats, such as soil, are only partially hydrated. In the latter, water is characteristically distributed as films on soil particles that are, on average thinner, than are typical OMV (ca. ≤10 nm water film vs. 20 to >200 nm OMV;). Methodology/Principal Findings: We have identified a new bacterial surface structure, termed a "nanopod", that is a conduit for projecting OMV significant distances (e.g., ≥6 µm) from the cell. Electron cryotomography was used to determine nanopod three-dimensional structure, which revealed chains of vesicles within an undulating, tubular element. By using immunoelectron microscopy, proteomics, heterologous expression and mutagenesis, the tubes were determined to be an assembly of a surface layer protein (NpdA), and the interior structures identified as OMV. Specific metabolic function(s) for nanopods produced by Delftia sp. Cs1-4 are not yet known. However, a connection with phenanthrene degradation is a possibility since nanopod formation was induced by growth on phenanthrene. Orthologs of NpdA were identified in three other genera of the Comamonadaceae family, and all were experimentally verified to form nanopods. Conclusions/Significance: Nanopods are new bacterial organelles, and establish a new paradigm in the mechanisms by which bacteria effect long-distance interactions with their environment. Specifically, they create a pathway through which cells can effectively deploy OMV, and the biological activity these transmit, in a diffusion-independent manner. Nanopods would thus allow environmental bacteria to expand their metabolic sphere of influence in a manner previously unknown for these organisms

    Membrane fission by dynamin: what we know and what we need to know

    Get PDF
    The large GTPase dynamin is the first protein shown to catalyze membrane fission. Dynamin and its related proteins are essential to many cell functions, from endocytosis to organelle division and fusion, and it plays a critical role in many physiological functions such as synaptic transmission and muscle contraction. Research of the past three decades has focused on understanding how dynamin works. In this review, we present the basis for an emerging consensus on how dynamin functions. Three properties of dynamin are strongly supported by experimental data: first, dynamin oligomerizes into a helical polymer; second, dynamin oligomer constricts in the presence of GTP; and third, dynamin catalyzes membrane fission upon GTP hydrolysis. We present the two current models for fission, essentially diverging in how GTP energy is spent. We further discuss how future research might solve the remaining open questions presently under discussion

    History of behavioral accounting research (1960-2023): a bibliometric analysis

    Get PDF
    Purpose: This study aims to examine the over 60-year evolution of behavioral accounting research (BAR), with the main aim of critically and accurately tracing its past, present and future. Design/methodology/approach: This study used Scopus and Google Scholar databases to collect 2,263 articles of BAR published on relevant accounting journals. Thus, this study used Bibliometrix to provide a temporal overview of articles and a temporally oriented network co-occurrence analysis of BAR topics. Findings: This study retraces the history of BAR since its origins and, also on the basis of triggering events inside (e.g. Nobel Prizes for behavioral economics studies) and outside (e.g. accounting scandals) the academic debate, this study critically discusses the evolution and interconnections of BAR topics. Then, future research is addressed toward main promising avenues, thus integrating recent technological applications into the behavioral accounting experimental designs to improve their external validity, exploring the potential positive effects of professionals’ heuristics in performing accounting tasks under certain environmental conditions, exploiting behavioral accounting frameworks to analyze and improve sustainability reporting and sustainability performance management. Originality/value: Although BAR is rich of contributions, including sub elds and contaminations, it lacks a holistic evaluation of its origins, development and future perspectives. In this vein, to the best of the authors’ knowledge, this is the rst study to use a bibliometric analysis to evaluate the evolution of BAR

    Cognitive biases in implementing a performance management system: behavioral strategy for supporting managers’ decision-making processes

    Get PDF
    Purpose The purpose of this paper is twofold: to provide a clear picture on the cognitive biases affecting managers' decision-making process of implementing a performance management system (PMS), and to identify managerial practices, measures and the key challenges to manage the cognitive biases in the corporate strategy. Design/methodology/approach Semi-structured interviews, based on theoretical milestones of performance management and cognitive psychology, gathered from 104 experienced professionals' evaluations on the likelihood and impact of managers' cognitive biases in PMS implementation, potential solutions as well as drivers and connected criticalities. Findings Recurring cognitive biases, together with considerable impacts, emerged in the first, and most strategic, phases of the PMS implementation. The authors developed a roadmap to support corporate transition to integrate behavioral strategy into the PMS implementation aiming to achieve economically and efficiently sound performance. Research limitations/implications From the view of proper behavioral strategy affirmation in performance management literature, in a small way, the authors contribute to a desirable taxonomy of cognitive biases so differentiated decision-making scenarios may be built to compare results and draw new observations. Behavioral studies could transversally connect the cognitive biases of performance management to actors' sociodemographic features and personality types. Practitioners may check biases affecting their organizations by means of the questionnaire and, consequently, adopt the framework illustrated to reduce them. Originality/value Performance management literature has constantly investigated positive and negative behavioral factors related to the PMS. This study, instead, makes a theoretical and methodological contribution to the PMS implementation as a decision-making process. The authors propose a theoretical framework that integrates cognitive psychology insights and applies measures to reduce biases

    Automated test-based learning and verification of performance models for microservices systems

    Get PDF
    Effective and automated verification techniques able to provide assurances of performance and scalability are highly demanded in the context of microservices systems. In this paper, we introduce a methodology that applies specification-driven load testing to learn the behavior of the target microservices system under multiple deployment configurations. Testing is driven by realistic workload conditions sampled in production. The sampling produces a formal description of the users' behavior through a Discrete Time Markov Chain. This model drives multiple load testing sessions that query the system under test and feed a Bayesian inference process which incrementally refines the initial model to obtain a complete specification from run-time evidence as a Continuous Time Markov Chain. The complete specification is then used to conduct automated verification by using probabilistic model checking and to compute a configuration score that evaluates alternative deployment options. This paper introduces the methodology, its theoretical foundation, and the toolchain we developed to automate it. Our empirical evaluation shows its applicability, benefits, and costs on a representative microservices system benchmark. We show that the methodology detects performance issues, traces them back to system-level requirements, and, thanks to the configuration score, provides engineers with insights on deployment options. The comparison between our approach and a selected state-of-the-art baseline shows that we are able to reduce the cost up to 73% in terms of number of tests. The verification stage requires negligible execution time and memory consumption. We observed that the verification of 360 system-level requirements took ~1 minute by consuming at most 34 KB. The computation of the score involved the verification of ~7k (automatically generated) properties verified in ~72 seconds using at most ~50 KB. (C)& nbsp;2022 The Author(s). Published by Elsevier Inc.& nbsp
    corecore