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them back to system-level requirements, and, thanks to the configuration score, provides engineers
with insights on deployment options. The comparison between our approach and a selected state-of-
the-art baseline shows that we are able to reduce the cost up to 73% in terms of number of tests.
The verification stage requires negligible execution time and memory consumption. We observed that
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1. Introduction deployment (e.g., DOCKER?), either physical or virtual machines,

or a combination of them with different hardware capacity con-

The term “microservices” is used to denote applications built straints. Companies report that introducing a microservices ar-

as suites of loosely coupled specialized services, each running chitecture often adds more communication between the different
in its process and communicating with lightweight mechanisms, sgrvices (Alshugayran gt al., 20_]6). This often affects performance
such as an HTTP resource API (Dragoni et al., 2017). This architec-  (1-€. how the target microservices system performs upon user re-
tural style lends itself to decentralization and to the adoption of ~ duests) and scalability (i.e., how the target microservices system
continuous integration and deployment practices, as reported by performs when increasing the scale of operation) that re.present
several companies (e.g., Amazon and Netflix) that successfully de- ~ fundamental quality attributes that shall be assured with sys-
veloped and deployed microservices applications in their produc- ~ tématic methods supporting the engineering life-cycle (Soldani
tion environment. Several configuration alternatives are possible ¢t al» 2018; Avritzer et al.,, 2020). As described in Soldani et al.

for microservice deployment, for example, serverless microser- (2018), performance testing of microservices is recognized as
vices using functions (e.g., AMAZON LaMBDA'), container-based challenging in the IT .1ndus.try that increasingly integrates de-
velopment and operations in an overall framework referred to

as DevOps (Bertolino et al.). As described in Ghezzi (2018), in
* Editor: Raffaela Mirandola. this context there is the need of methods that can be prac-
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performance assessment in industry focus on the passive mon-
itoring of the system response time or resources utilization to
detect anomalous performance and scalability issues, such as
bottlenecks (Heinrich et al., 2017). Even approaches based on
load or stress testing, usually extract a set of performance in-
dices and statistics that are difficult to use for guiding engi-
neering decisions because of missing connections with system-
level requirements (Jiang and Hassan, 2015; Ferme and Pautasso,
2018).

The main goal of this work is to address the aforementioned
limitations by enabling automated decision gates in performance
testing of microservices that allow requirements traceability. We
seek to achieve this goal by endowing common performance
testing practices used in microservices systems, with the ability to
automatically learn and then formally verify a performance model
of the System Under Test (SUT) to achieve strong assurances of
quality.

To achieve our main goal, in this paper we introduce a method-
ology that integrates load testing and Bayesian inference (Robert,
2007) to learn a formal model of the SUT and then probabilis-
tic model checking (Kwiatkowska et al., 2011) to automatically
verify system-level requirements after accounting for runtime
evidence. More in detail, our methodology has the following
steps: (i) design-time analysis of the target operational setting;
(ii) performance model learning via load testing and inference;
then (iii) verification of requirements, and computation of the
configuration score.

The design-time analysis phase aims at defining the behavior
of multiple user categories and the workload intensity (i.e., arrival
rate of concurrent users) that are likely to occur in production
by studying the operational data. User categories are then used
to build a formal description of the usage profile in terms of a
Discrete Time Markov Chain (DTMC) (Norris, 1998). The work-
load intensity, the alternative deployment configurations, and
the usage profile collectively compose the input of the learning
activity. This stage executes multiple load testing sessions for
each target operational setting. Each session loads the SUT fol-
lowing the DTMC model and feeds a Bayesian inference process
that incrementally learns performance parameters based on the
collected runtime evidence. The outcome is a set of Continuous
Time Markov Chains (CTMC) (Anderson, 2012), one for each de-
ployment configuration, that describes the stochastic behavior
of user categories as well as performance rates associated with
microservices. Models are then verified in the last stage against
system-level requirements using the probabilistic model checker
PRISM (Kwiatkowska et al., 2011). Furthermore, we use the model
checker to automatically compute a score that evaluates each
individual deployment configuration based on the ability to fit the
operational setting.

In this paper, we present a comprehensive discussion of the-
oretical aspects related to the core stages of our methodology
and we describe the current toolchain implementation we used
to conduct automated experiments in our in-vitro testing envi-
ronment. Specifically, we conducted an experimental campaign
to evaluate our approach using a representative microservices
system called “Sock Shop” with different configurations based
on alternative memory allocations, amount of CPU, and number
of microservice replicas. Results of our controlled experiments
show that the learning process provides the ability to trace per-
formance issues back to violated requirements. Violations can
be detected with limited effort. We show that our approach is
cheaper compared to a selected state-of-the-art baseline called
Domain Metric (Avritzer et al, 2020) that has been recently
applied to evaluate the performance of microservices systems in
different industrial domains (Avritzer et al., 2021b,a). In particu-
lar, the rigorous foundation of our approach reduces the cost up
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to 73% in terms of number of tests required by the load testing
sessions. The verification of the inferred models requires negligi-
ble execution time and memory consumption. We observed that
the verification of 360 system-level requirements took ~ 1 min by
consuming at most 34 KB. The computation of the score involved
the verification of ~ 7k (automatically generated) properties
verified in ~ 72 s using at most ~ 50 KB. The outcome of our
evaluation shows also that the choice of the deployment config-
uration that better fits the operational setting is not trivial. Thus,
our approach provides engineers with suitable metrics to drive
the identification of problematic deployment configurations.
The key contributions are as follows:

e A novel methodology for model learning and verification
of microservice-based systems under different deployment
alternatives, via automated load testing, Bayesian inference,
and probabilistic model checking.

e The evaluation of our methodology on a representative
microservice-based system benchmark pointing out bene-
fits, costs, and threats to validity.

The remainder of this paper is structured as follows. In Sec-
tion 2 we introduce a preview of our approach. In Section 3
we recall the necessary background concepts. Our target bench-
marking system of choice (i.e., Sock Shop), used throughout the
article to illustrate the main phases of the methodology, is pre-
sented in Section 4. In Section 5 we introduce a rigorous and
comprehensive treatment of our model learning and verification
methodology. In Section 6 we report the evaluation carried out
to assess the benefits and the costs of the core stages of our
methodology. In Section 7 we describe related work. In Section 8
we discuss the main strengths and limitations of our approach.
Finally, in Section 9 we conclude the paper and we discuss future
directions of this work.

2. Preview of the approach

As anticipated in Section 1, we focus on microservices systems
modeled as CTMC and quantitative requirements expressed us-
ing the Continuous Stochastic Logic (CSL) notation (Forejt et al.,
2011). As described in Filieri et al. (2016), Markov models such as
DTMC and CTMC represent widely accepted formalisms to model
and verify software system reliability and performance (Filieri
et al., 2012; Guerriero et al., 2019). We assume that the rate
associated with model transitions is initially unknown/uncertain.
In particular, nonfunctional aspects (e.g., response time of mi-
croservices) are hard to predict during the early design stages and
they may even change depending on environmental conditions
like the operational profile or the system configuration.

Fig. 1 illustrates a high-level schema of our approach. The
preliminary stage concerns the (i) analysis of the operational set-
ting whose aim is to define the behavior of the users and study
the operational data to extract a distribution of the workload
intensity that is likely to occur in production. The distribution
provides our methodology with the workload intensities repre-
senting representative conditions that need to be covered during
testing. A number of user categories can be manually defined
by the tester or automatically extracted from the operational
data usually collected by observing the system in production in a
DevOps setting (Bertolino et al., 2020). Each category is specified
as a valid interaction workflow in terms of sequences of requests
to microservices. Starting from this definition, we automatically
build a model of the usage profile in terms of a DTMC model.
According to the analysis stage, the DTMC specifies the stochastic
behavior of users that is likely to occur in production. Then, the
distribution of the workload intensity and the DTMC model are
given as input to the model learning.
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Fig. 1. High-level schema of the test-based model learning and verification methodology. Gear icons denote automated machinery steps, whereas arrows indicate

the data flow.

In the (ii) model learning stage, the tester specifies the prior
knowledge (if any) on the SUT behavior in terms of performance
rates. Then, we automatically execute multiple load testing ses-
sions to query the SUT and incrementally learn a full specification
for the system behavior. For each representative workload inten-
sity and available deployment configuration, the SUT is loaded by
generating synthetic users following the DTMC model. The learn-
ing process leverages Bayesian inference to incrementally update
the partial specification (i.e., the DTMC model) by augmenting it
based on the collected runtime evidence. This process produces as
an outcome a CTMC model encoding the full specification learned
for each workload intensity and deployment configuration. The
CTMC models learned during the testing sessions compose the
input of the (iii) verification stage. Here we leverage the proba-
bilistic model checker PRISM to verify the learned models under
different operational settings and deployment configurations. The
outcome of the model checker can be used, for instance, by
engineers as readiness criteria for a new release of the system. In
addition to verification of requirements, we introduce the notion
of configuration score to rank the available configurations and
select the one that is likely to best fit the target operational
setting to support engineers during the final “go live” decision
gate.

It is worth noting that our approach does not focus on es-
timating average behavior. Indeed, especially under stress, the
response time of microservices tends to result in heavy-tailed
distributions (typically due to higher resource contention or ac-
cumulation of requests in processing queues). In these cases, a
large portion of requests often falls in the tail, skewing the means
of the distributions. Therefore, requirements evaluated on the
means may fail to capture the quality of service perceived by the
users. For instance, a service with a mean of 200 milliseconds may
still serve 10% of the users in more than 1 s. Thus, rather than
focusing on average behavior, we infer the full probability density
functions that we encode as parameters of a CTMC model.

It is worth noting that probabilistic model checking (in the
last phase) requires exhaustive exploration of the model’s state
space to analyze arbitrarily complex CSL properties (Courcoubetis
and Yannakakis, 1995; Clarke et al., 2000). We keep this activity
separated from model learning as an offline phase, where we
can execute demanding activities without interfering with the
system operation. The aim here is to make the online stages of our
methodology as lightweight as possible. In particular, the learning
process collects evidence and executes Bayesian inference which
is computationally inexpensive, as described in the next sections.

3. Background

This section recalls the background notions needed to formal-
ize our approach. We briefly revisit DTMC and CTMC models, the
quantitative temporal logic CSL, and Bayesian Inference. We refer
the reader to the bibliography reported below for a complete
treatment of these topics.

3.1. Continuous Time Markov Chains

CTMCs (Anderson, 2012) are continuous time stochastic pro-
cesses with discrete state space. The modeled system remains
a certain amount of time (following a non-negative exponential
distribution) at each state and then it evolves according to prob-
abilities that depend only on the leaving state. Formally, a CTMC
is a tuple (S, sq, P, v, AP, L) where:

e S is a finite set of states;

e s; € S is the initial state;

e P:S xS — [0, 1] is the transition probability matrix;

e v is a vector of real values in REE;

e AP is the set of atomic propositions;

e L : S — 2P is a labeling function that associates to each
state the set of atomic propositions that are true in that
state.

The CTMC evolves within the state space S = {sq,...,Sk}.
When the process enters into state s;, it remains there for an ex-
ponentially distributed time period t with mean 1/v;. At the end
of t, the process will move to a different state s;, with j # i with
probability P(s;, s;), such that Zj P(s;, s;) = 1, and Vi, P(s;, si) = 0.
In the rest of the paper, the notation p;; will be used as short form
for P(s;, s;). The transition probability matrix is then denoted by
P = (pjy). It is worth noting that P defines an embedded DTMC
model. In fact, by discarding the temporal aspects defined by v,
we obtain a discrete time stochastic processes with discrete state
space, whose behavior is specified by P.

The vector v = (vq,...,vx) defines the parameters of K
different exponential distributions governing the time spent in
states sy, ..., Sk, respectively. The parameter r; = v; - p; yields
the local rate, or intensity, of transitioning from state s; to state s;.
The so computed rates define the infinitesimal generator matrix
R = (r;;) of the CTMC model.

3.2. Continuous Stochastic Logic

CSL (Baier et al., 2003) is a probabilistic branching-time tem-
poral logic with state and path formulas interpreted over CTMC
states and paths, respectively. It extends the Computation Tree
Logic (Clarke et al., 2000) with two probabilistic operators that
refer to the steady state and transient behavior of the target
system. The steady-state operator S refers to the probability of
residing in a particular set of states (identified by a state formula)
in the long run. The transient operator P refers to the probability
of the occurrence of particular paths in the CTMC. To predicate
over the time required by a certain path, the path operators until
(U) and next (X) are extended with a parameter that specifies a
time interval. Formally, let p € [0, 1] be a real number, >< €
{<, <, >, >} a comparison operator, and I € R>( a non empty
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interval. The syntax of CSL state (¢) and path (v) formulas is
defined inductively as follows.

¢u=true|a€AP [N | = | Secp(P) | Pocp(¥) (1)

Vi=Xp|pU¢loU ¢ (2)

Formally, the state-formulas are interpreted over the states of
a CTMC with labels in AP. The definition of the entailment relation
= is as follows. Let Sat(¢) ={s €S : s &= ¢}:

sk trueforalls e S
skEaiffael(s)

skE—giff sk ¢
SEAGiffsE=¢ii=1,2

S = Seapl@) iff (s, Sat(¢)) € I
S |= Poap(@) iff Prob(s, ¢) € I.p

Here, 7(s, Sat(¢)) is defined as lim;_,», Prob{oc € Path : o, €
Sat(¢)}, where Path is the set of all possible paths (i.e., sequences
of states), and o is the state of o at time t. We use Prob(s, ¢) to
denote the probability measure of all paths o € Path satisfying
¢ when the system starts in state s. Essentially, the formula
Spap(¢) checks whether the steady-state probability for ¢ meets
the boundary condition ><ip, whereas the state formula P.,()
asserts that the probability of observing the paths satisfying v
meets ><ip. The usual CTL path quantifiers 3, V are replaced by
the operator P. Intuitively, 3¢ (i.e., there exists a path where ¢
holds) can be expressed as P-q(¢), V¢ (i.e., for all paths ¢ holds)
corresponds to P>1(¢).

The entailment relation for the path-formulas is defined con-
sidering execution paths as follows, where we use o [k] to denote
the kth state in the path o:

o = X¢ iff o[1] defined and o[1] = ¢
o = ¢iUg, iff Ik > 0: (o[k] = 2 AVO < i<k oli] =¢1) (4)
o= ¢iU'g, iff3t el (o = AVue[0,ul, o, = ¢1)

The operator U’ is the timed variant of the until operator U of
CTL. The path formula ¢;U’¢, asserts that: ¢; holds until some
time instant t € I; then ¢, holds. Common derived path formulas
are F¢ (i.e, finally) and G¢ (i.e., globally), defined as trueU¢, and
—F—¢, respectively.

3.3. Bayesian inference

Bayesian inference (Berger, 1985) is a method of statistical
inference used to update the probability for a hypothesis on un-
certain (or unknown) quantities as more evidence or information
becomes available. The main goal is to fill the gap between beliefs
and evidence on one or more uncertain/unknown parameters 6
affecting the behavior of a stochastic phenomenon of interest.
The prior knowledge (i.e., initial hypothesis or belief) of 6 is
incrementally updated based on a collected data sample y =
(Y1, Y2, - .., yn) describing the actual behavior of the target phe-
nomenon. By using the Bayes’ theorem we obtain the posterior
distribution f(6|y), describing the best knowledge of 6, given the
evidence y.

f(Oly) < f(y10) - f(6) (5)

The density f(y|6) represents the compatibility of the data with
the hypothesis. This density, when expressed as a function of
6, is usually referred to as the likelihood function and is gen-
erally denoted as I(0]y), or I(f|data), when the notation gets
heavy, following the notation introduced in Insua et al. (2012).
The hypothesis is often available from external sources such as
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Table 1
Summary of valid requests for Sock Shop.

Service ID Path Method
home 1 /index.html GET
login 2 /login GET
getCatalogue 3 |catalogue GET
catalogueSize 4 [catalogue/size?size={} GET
cataloguePage 5 |catalogue?page={}&size={} GET
catalogue 6 /category.html GET
getltem 7 |catalogue/{} GET
getRelated 8 [catalogue?sort={}&size={}&tags={} GET
showDetails 9 /detail.html?id={} GET
tags 10 [tags GET
getCart 11 Jcart GET
addToCart 12 [cart POST
basket 13 [basket.html GET
createOrder 14 Jorders POST
getOrders 15 [orders GET
viewOrdersPage 16 /customer-orders.html GET
getCustomer 17 /customers/{} GET
getCard 18 Jcard GET
getAddress 19 /address GET

expert information based on past experience or previous studies.
This information is encoded by the prior distribution f(6). The
posterior distribution can be used in turn to perform point and
interval estimation. Point estimation is typically addressed in the
multivariate case, by summarizing the distribution through the
posterior mean E[f(6]y)] and the (95%) Highest Density Region
HDR[f(6|y)]. The magnitude of the HDR yields the highest possi-
ble accuracy in the estimation of the true value of 6 and is usually
adopted as a measure of the confidence gained after the inference
process.

4. System under test

In this work, we use an existing microservices-based bench-
mark system called Sock Shop? as a running example and system
under test in our empirical evaluation. Sock Shop is a microser-
vice reference application used by researchers in the field of per-
formance engineering to evaluate their approaches (e.g., see the
studies Assuncdo et al., 2020; Grambow et al., 2020; v. Kistowski
et al, 2019, to name a few). As described in Avritzer et al. (2020),
Sock Shop supports: (i) usage of well-established microservice
architectural patterns; (ii) possibility of using automated deploy-
ment practices in software containers; (iii) support for different
deployment configuration options. Furthermore, it enables a di-
rect quantitative comparison with existing performance analysis
techniques adopting this system as a benchmark (Avritzer et al.,
2018, 2020).

The system runs a containerized e-commerce web applica-
tion composed of a number of microservices implemented by
using various technologies, such as Java, .NET, Node.js, and Go.
Table 1 summarizes the microservices and related requests that
can be issued to them. Different types of users show differ-
ent interaction patterns. For instance, a user that buys a prod-
uct is likely to authenticate, add one or more product into the
cart, and then create an order. This usage pattern reduces to a
path of service invocations. For instance, surfing the catalog and
adding products to the cart can be executed by means of the fol-
lowing path of valid requests: cataloguePage, showDetails,
getItem, getCustomer, getCart, addToCart. Instead, a nom-
inal visitor is likely to surf the catalog without authenticating
and filling up the cart. In this latter case, the path of requests
could be as follows: cataloguePage, showDetails, getItem,

3 Sock Shop is an open source project maintained by Weaveworks. Sources
and documentation are available at: https://microservices-demo.github.io/.
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Table 2
Probabilistic timed reachability and response patterns.
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Pattern Natural language description Formalization as CSL property
Py Probabilistic timed reachability: the state formula ¢ must become true within Poap [F'0 ]
time bound ¢, with a probability bound ><ip.
P, Probabilistic response: after the state formula ¢, holds, the state formula ¢, Po1 (G (@1 = Posp [ F<'2 1)1
must become true within time bound ¢, with a probability bound s<p.
Ps3 Probabilistic constrained response: after the state formula ¢ holds, the state P21 (G (@1 = Pesp [ ( —2U~¢3 ) ] )]
formula ¢3 must become true, without ¢, ever holding, within time bound ¢,
with a probability bound ><p.
Py Time constrained response chain (N causes, 1 effect): if ¢; followed by (¢; P=1 |G ¢1 — Ch(2)] with

within time t;, with a probability bound ><ip;)*<*=N have occurred, then in
response ¢y eventually holds within time bound ty,q, with a probability

bound ><ipy1.

Ch(i < N) = Poap [F<i(¢h & Ch(i + 1))]; and
Ch(i = N + 1) = Po1[X(Ppap; [F<;#i1)]

Table 3
System-level performance requirements for Sock Shop.
Requirement Natural language description Formalization as CSL property Pattern
Ry The visualization of the orders page in less than 1 min shall happen P-og [F<% viewOrdersPage] Py
at least in 90% of the times.
R, The catalog shall be reached in no more than 10 s after the login, at P=1 [G ( login — P,
least 85% of the times. P-oss | F<'%getCatalogue | )]
R3 The payment of an order involves the getCard service, which is P>1 [G getCart — Py
activated, in 98% of the cases, within 5 s from a getCart request (P-o.0s [ F=5 (getCard &
being handled. Afterwards, a createOrder request is successfully P=1 [ X (P=09s | F<s createOrder ])])])]
executed within another 5 s in 98% of the cases.
Ry The authentication shall last no more than 10 s and then reaching P-oes [F<'° login & custom
the orders page shall take no more than other 10 s in at least 65% (P~o [F<'° viewOrdersPage |)]
of the times.
Rs In the long-run, high probability of a successful pay shall be Pooq [ F71?° §709[ createOrder | | custom

achieved within 2 min, more than 90% of the times.

{getCustomer}
r=v-p

{home}

O

{getltem}

{cataloguePage}

P
"=v-p

'

7

Fig. 2. Small extract of the CTMC model of Sock Shop.

cataloguePage, showDetails, getItem. The two user behav-
iors yield different request invocations (i.e., getCustomer and
cataloguePage) after getItem. The CTMC extracted in Fig. 2
models these alternative paths with two outgoing edges from s;
to s17 and ss, respectively. In fact, our modeling approach maps
requests to model states and possible sequences of requests to
model paths. Model states are uniquely identified by the ID listed
in Table 1, while the set of atomic propositions AP is defined by
the set of request labels. The transition probabilities (e.g., p, p’)
depend on the distribution of the user categories. Considering our
simple example, 70% visitors and 30% buyers reflect to p = 0.7
and p’ = 0.3. In this sense, the transition probability matrix P
(i.e., the embedded DTMC model) defines the usage profile, lever-
aged to guide the load testing activity as described in Section 5.
Temporal aspects of the CTMC model (e.g., r, ') depend on the
matrix P and the vector v. While the former component P is (in
our context) known, and given by a certain mix of user categories,
the latter one v is difficult or even impossible to fully specify at
design-time, before observing the SUT at runtime.

In order to express requirements for the SUT we use CSL
formulas, as discussed in Section 3. With the aid of this language,
engineers can express properties about the system that are typi-
cally domain-dependent. To ease the formulation of probabilistic
properties, engineers usually make use of property specification
patterns (Autili et al., 2015). Patterns describe generalized and
recurring properties of interest. In our case, we are interested in

verifying how the target microservices system responds to user
requests in terms of performance, therefore we restrict ourselves
to properties that can be instanced by using probabilistic timed
reachability and probabilistic response patterns (Grunske, 2008;
Autili et al.,, 2015) adapted to the CSL syntax. Representative ex-
amples of patterns are reported in Table 2 showing a description
in natural language as well as the corresponding formalization in
CSL. In Table 3, we list a number of domain-dependent require-
ments that have been defined for Sock Shop. The table contains
requirements instanced from the patterns as well as custom CSL
properties. As an example, Ry, Ry, and R; are instances of Py,
P,, and Ps, respectively, where state-formulas are microservices
of Sock Shop and both probability bounds and time bounds are
domain-dependent. In this case, the management of catalogs
and orders are core functions from the perspective of the busi-
ness logic of Sock Shop. Therefore, requirements predicate over
the probabilistic response of the system when the microservices
carrying out such functions are invoked.

Based on the assumptions reported above, such properties
cannot be verified during the early design stages since the initial
CTMC model is underspecified. Namely, the values of the in-
finitesimal generator matrix R are uncertain/unknown quantities
that must be learned based on runtime evidence collected by ex-
ecuting the stages of our methodology described in the following
section.

5. Test-based learning and verification

This section illustrates the steps of our methodology. The
presentation follows the stages reported in Fig. 1. Namely, we
introduce the preliminary stage in Section 5.1 (analysis of the
operational setting) and then we describe the core stages in
Section 5.2 (performance model learning) and Section 5.3 (ver-
ification).
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Table 4
Examples of user categories interacting with Sock Shop.
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User category Weight Description of the workflow Corresponding sequence of requests length
visitor 0.4 Visits the home page, views home — getCatalogue — getCart — home — getCatalogue — 17
the catalog and the details of getCart — catalog — catalogueSize — tags — cataloguePage —
some products getCart — getCustomer — showDetails — getltem — getCustomer
— getCart — getRelated
buyer 0.3 Visits the home page, logs in, home — getCatalogue — getCart — login — home — getCatalogue 42
views the catalog and some — getCart — home — getCatalogue — getCart — catalog —
details, adds a product to the catalogueSize — tags — cataloguePage — getCart — getCustomer
cart, visits the cart, and then — showDetails — getltem — getCustomer — getCart —
creates an order getRelated — addToCart — showDetails — getltem — getCustomer
— getCart — getRelated — basket — getCart — getCard —
getAddress — getCatalogue — getltem — getCart — getCustomer
— getltem — createOrder — viewOrdersPage — getOrders —
getCart — getCustomer — getltem
order visitor 0.3 Visits the home page, logs in, home — getCatalogue — getCart — login — home — getCatalogue 12

and views the stored orders

— getCart — viewOrdersPage — getOrders — getCart —

getCustomer — getltem

5.1. Analysis of the operational setting

The objective of this preliminary phase is to provide the load
testing with the ability to generate representative operational
conditions to be tested. In our context, an operational condition is
defined as a pair: workload intensity and usage profile. A detailed
description of the two elements is as follows.

5.1.1. Workload intensity

The workload intensity (Kistowski et al., 2014) represents the
number of (active) concurrent users in the SUT. The empirical
distribution computed from operational data describes for each
workload intensity A € A, its probability of occurrence, estimated
as the relative occurrence frequency f()) in the data gathered
by observing the SUT. To build the empirical distribution, the
number of concurrent users accessing the application shall be
periodically recorded in a selected time window. From this data,
we apply data binning to aggregate the recorded intensities into
a smaller number of bins Aq,..., A, that are then associated
with the frequency of occurrence f(A1), ..., f(Xk). The test suite
coverage criterion is based on the frequency values. The rationale
is to use the empirical distribution to select the representative
intensities to be generated during load testing. By relying on
the operational data of our running example, we identified the
aggregated bins reported in Eq. (6).

A = {50, 100, 150, 200, 250, 300}

f(x) ={0.11, 0.19, 0.21, 0.23, 0.20, 0.06} (6)
5.1.2. Usage profile

In addition to intensity values, representative usage profiles
must be generated to learn accurate performance models. A usage
profile describes the categories of users (i.e., actors) that are likely
to use the SUT in the target operational environment. We adopt
a behavior mix modeling approach (Avritzer et al., 2020), where
workload generation is conducted by using a weighted random
sampling of users from a number of categories. Each category has
a weight w (i.e., selection probability) and specifies the behavior
of a certain type of users through a sequence of valid requests
to services exposed by the SUT. The categories listed in Table 4
(visitor, buyer, and order visitor) have been identified in Sock Shop
to replicate the usage profile reported in Avritzer et al. (2020).

According to our framework in Fig. 1, both the categories and
the behavior mix can be user-defined or extracted mechanically
from operational data in the preliminary stage. The mechanical
extraction adopted by our methodology follows the WESSBAS
approach introduced in Vogele et al. (2018). In the following we
briefly describe the required steps and we let the reader refer to
this latter work for further details.

e Session log generation. While the system runs in produc-
tion, raw session information can be recorded in a selected
time window. For each user request, the following infor-
mation shall be extracted: session identifier, request URL,
method (e.g., GET, POST), request start time, request end
time. Then, requests are grouped by the specified session
identifier (e.g., session ID, or client IP address) to create an
ordered sequence of service requests extracted from URLs
and methods.

e Clustering. This step has the objective of identifying dif-
ferent groups of users with similar navigational patterns
(i.e., user categories). As suggested in Vogele et al. (2018),
the centroid-based X-means algorithm can be conveniently
used in this case, since it scales better than K-means and
it does not require the specification of the exact number of
clusters in advance. Thus, each session log can be encoded
into a matrix C = (c;) defining the transition counts for each
pair of services (i, j). The encoded sessions are then clustered
based on the normalized Euclidean distance metric. As a
result, the centroids computed by the clustering algorithm
represent the identified user categories.

e Behavior mix extraction. After the clustering, the relative
frequency w of each user category is calculated by dividing
the number of sessions within each cluster by the total
number of sessions in the session log.

When the categories have been defined, our framework auto-
matically generates a formal representation of the behavior mix
in terms of a DTMC model. The available requests in Table 1 are
numbered to uniquely identify states in the DTMC (e.g., home is
the initial state sq). Given the user categories, for each state s;
we create the outgoing transitions in the DTMC by identifying all
possible next requests considering all the user categories. More
precisely, the transition probability p;; is computed as follows:

pij =y Plsi — sjlc) - P(c) (7)

with P(c) equal to the relative frequency w associated with the
category c, and P(s; — sj|c) equal to the frequency of occurrence
of s; — s; in the category c.

As an example, the transition probability ps7
(i.e, getCatalogue — getItem) is equal to P(getCatalogue
— getItem | buyer) - P(buyer) since this transitions occurs only
in the category buyer. Here, getItem follows getCatalogue
in 1 out of 4 cases. Therefore, the transition probability p;; =
0.25-0.3 = 0.075. By following the same approach, the transition
probability ps 11 (i.e., getCatalogue — getCart) is equal to
0.4+0.340.3-0.75 = 0.925.
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Fig. 3. DTMC model specifying the behavior mix of Sock Shop.

Fig. 3 shows the whole DTMC model mechanically obtained
from the probability matrix P = (p;) computed by applying
the process above. Such a model represents in our approach the
behavior mix that drives the testing sessions in the learning stage,
as described in Section 5.2.

It is worth noting that, even though each user category can be
described in principle as DTMC following the approach presented
in Vogele et al. (2018), in this work we follow the guideline re-
ported in Avritzer et al. (2020) that characterizes a user category
with a single workflow (sequence of requests). This choice is
motivated by the need of carrying out a direct quantitative com-
parison between our approach and the Domain Metric (Avritzer
et al., 2020), that we use as ground truth baseline as anticipated
in Section 1. In case each category is described by a DTMC,
the behavior mix can be computed by following Eq. (7) in a
comparable way. The probability P(s; — s;|c) depends in this case
on the transition probability matrix of the corresponding DTMC
model rather than the frequency of occurrence in the sequence
of requests.

5.2. Performance model learning

The objective of this phase is to learn performance models by
running a number of load testing sessions to stress the SUT under
different operational conditions and deployment configurations.
The outcome of each testing session is a CTMC model that en-
codes temporal information to enable further analysis in the last
stage (i.e., verification). In the following, we provide a description
of the main theoretical aspects of the inference process and the
termination condition as well as implementation details.

5.2.1. Inference process

Each testing session takes as input the DTMC model M, a
workload intensity A, and a deployment configuration c. The
inference process runs along with the testing session and it in-
crementally updates the prior knowledge taking into account the
runtime evidence collected by testing the SUT deployed according
to c. The testing session generates the workload A where each
synthetic user follows the stochastic behavior defined by M.
More precisely, each concurrent user decides the next request
depending on the current state in M and the probability matrix
(pyj). For instance, from state s3, the user performs either getItem

or getCart with probability 0.075 and 0.925, respectively. The
next state is either s; or sq7.

The goal of the inference process is to estimate the infinites-
imal generator matrix R = (r;) of a CTMC model X, given the
priors and the runtime evidence. The evidence in our context is
represented by the time spent in each state i and the occurrence
of every transition from state i to state j as an event trace. It
is worth noting that we observe A concurrent users modeled
through statistically independent instances of the DTMC M, all
starting from the common initial state. Namely, the transition
matrix P = (pj;) of M defines the embedded DTMC of the CTMC x
to be inferred. The whole testing session executes the transition
from state i to state j a number of times, denoted by Nj;. The total
time spent in state i is denoted by T;.

From the Bayesian statistics perspective, the problem reduces
to infer the posterior probability f(P, v|data), where the transition
matrix P is known, and the distributions of the time spent v are
uncertain or even unknown. Assume that we observe a sequence
of states x; and time instants t;, for i = 1,...,n, of the first n
transitions of the chain X. Then, the likelihood function can be
written as follows.

n
(P, v|data) = ]—[ Uxi,le_vxiq(ti_[i_l)pxi—lxi
i=1

K K
Ni ,—iT; Nij
[T 15!
i=1 i=1

where N; = i Ny is the total number of transitions out of
state i, with i,j € {1,...,K}, i.e, the finite state space of x.
The likelihood function in Eq. (8) can be written in the form
I(P, v|data) = [;(P|data) l,(v|data), where:

K K K
L(Pldata) = [ [[]py’. L(vidata) =[] e
i=1

i=1 j=1

(8)

(9)

This setting implies that, given independent priors for P and v, the
posterior distributions are independent and the inference process
for v (i.e., unknown parameters in our context) can be carried out
apart from P (i.e., known parameters in our context). A natural
conjugate prior for the transition rates v is the Gamma distri-
bution (Diaconis et al.,, 1979). Given the following independent
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gamma prior distributions,
f(Vi)’\‘Ga(ai,bi),i: ]70"7I< (10)

the posterior distribution (combining prior and likelihood as de-
scribed in Section 3) is defined as follows:

f(vildata) ~ Ga(a; + N, b + T) (11)

Eq. (11) is the so-called updating rule used at runtime while
collecting the evidence. It is worth noting that the updating
rule, used to produce the new estimates, is computationally in-
expensive. For this reason, we can apply it online along with
testing, whereas the verification process, which is potentially
more expensive, is kept separate as the last (offline) stage.

In case the tester does not have initial beliefs on transition
rates, it is quite common to use an uninformative prior, such
as f(vi) ~ Ga(0,0) for all i. Even though this distribution is
improper (Robert, 2007), we obtain a sensible posterior as soon as
we get empirical observations. Nonetheless, the tester can build
the priors to reflect initial beliefs based, for instance, on past ex-
perience or previous studies, as described in Robert (2007). In this
case, the tester can choose suitable parameters: shape a; and rate
bi. As an example, consider the getItem request to the catalog
microservice (i.e., state s;). If the expectation for the getItem
permanence rate is 3.0, we could adopt either f(v;) ~ Ga(6, 2)
or f(v;) ~ Ga(12, 4). Although the two distributions have the
same mean value 3.0, the degree of confidence measured through
the HDR is different. More precisely, the information expressed
by the latter example is stronger: the HDR in the former case is
larger [0.84, 5.39], while in the latter case is smaller [1.43, 4.76],
meaning higher confidence.

When a testing session meets the termination condition, the
inference module stops and then applies punctual summarization.
Namely, we update the parameters of the infinitesimal generator
matrix R = (r;) of the model X by applying r; = v; p;, where
v; is estimated by summarizing the posterior knowledge through
E(f(vi|data)), as described in Section 3.

5.2.2. Termination condition

The termination condition of each testing session is deter-
mined by a statistic-driven technique (Jiang and Hassan, 2015)
that aims at ensuring the accuracy of the model learned from col-
lected data. This approach allows us to overcome shortcomings of
pre-defined static configurations (e.g., timer-driven and counter-
driven) by stopping a testing session as soon as the posterior
knowledge converges to statistically stable model parameters.
Specifically, our approach adopts Bayesian model comparison to
detect when the difference between two alternative models is not
substantial. Given a sample size N, the inference process builds a
sequence of posterior models as follows:

M, = f(v|datay), ..., M, = f(v|data,) (12)

where M;,, is the model learned by accounting for the prior M;
and the collected evidence data;,; having sample size N. Thus,
for each i > 1, we apply a model selection criterion based on the
Bayes factor (Jeffreys, 1998), reported below:
, P(data|M)

KM, M) = P(data|M’) (13)
Essentially, Eq. (13) quantifies the support for the model M over
the model M’ given the data under consideration. As described
in Jeffreys (1998), the standard scale for interpretation of this
ratio states that a K value between 10° and 10'/2 is barely worth
mentioning. Thus, we exploit the ratio K to terminate a testing
session as soon as we find the iteration j, such that K(M;, M;_1)
falls in this interval.
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5.2.3. Implementation

Fig. 4 illustrates the main components of our implementation
supporting the model learning stage of the whole methodol-
ogy. The schema contains the testing infrastructure (composed
of Load driver node and SUT node) and the two main modules.
The load testing module orchestrates the testing sessions. The
inference module executes the inference process and checks the
termination condition.

Testing infrastructure. The testing infrastructure defines the in-
vitro environment where the SUT is deployed and then tested.
Our approach aims at reproducing the conditions that are likely
to happen in production using an in-vitro setting. The testing
tool synthetically generates the workload based on the given
DTMC model and the empirical distribution of the workload
intensity. Our testing infrastructure supports standard practices
used in the context of microservices applications, i.e., container-
ized deployment upon either bare metal or virtualized computing
nodes. Fig. 4 shows that there exist two main computing nodes
in a typical leader-follower configuration: the Load driver node
(i.e., the leader) and the SUT node (i.e., the follower). We rely
on Docker for the deployment of the containerized application.
Specifically, the DockER SWARM mechanism allows the DOCKER
manager component to take control over the DocKER worker by
means of deploy/undeploy services with fine-grained configura-
tion settings for the DocKER containers. The whole SUT consists of
a number of DOCKER containers. Each container executes a single
microservice s; of the SUT.

Load testing module. As shown in Fig. 4, the core component of
this module has been realized using the Locust® load testing
tool. In our toolchain, LocusT handles the creation and execution
of the workload driven by the DTMC specification. On top of it,
we created an orchestration layer that automates the deploy-
ment/undeployment of the SUT and the execution/monitoring of
multiple testing sessions. The orchestration layer relies on the
BENCHFLOw domain specific language (Ferme and Pautasso, 2018)
to declare the testing sessions. The language allows the following
input parameters to be defined:

e the DTMC model M that drives the synthetic users;

e the empirical distribution f(11), ..., f(Ax) for each workload
intensity in A;

e the set C of deployment configurations, each one defining
the amount of RAM, CPU share, replicas per microservice.

For each element (A,c) € A x C, the orchestrator creates
and executes a testing session. DOCKER deploys the SUT using
configuration c. Then LocusT generates the workload intensity A,
where each synthetic user follows the stochastic behavior defined
by M, as described in Section 5.2.1. During the testing session,
LocusT reports all the issued requests and their response time.
This information represents the run-time evidence that feeds the
inference module to compute the posterior density functions.

Inference module. The inference module runs in parallel with
the load testing module and is fed by Locust that periodically
samples the occurrences N; of each state i and the total amount
of time T; spent in state i. This information is used to build the
posterior knowledge by applying the Bayesian inference process,
as detailed in Section 5.2.1. For each collected sample, the mod-
ule produces a new set of posterior density functions that are
compared to those computed with the previous sample using
the Bayes factor, as described in Section 5.2.2. Such a process
continues until, according to the Bayes factor, the posteriors are

4 Locusr is open source software available at http://locust.io.
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Fig. 4. Schema of the testing infrastructure and zoom in into the load testing module and the inference module.

not statistically stable which represents our termination condi-
tion. As soon as the Bayes factor converges, the inference module
triggers a termination signal issued to the load testing module.
The outcome of a testing session, executed for the pair (A, ¢), is a
CTMC model that composes the input of the verification stage of
our methodology.

5.3. Verification

The objective of this last phase is to verify the learned model
against formal requirements. Given a CTMC model A}, learned in
each testing session i = 1, ..., n, we use the PRISM probabilistic
model checker to detect possible violations of the CSL proper-
ties and compute the configuration score. The verification stage
follows the two steps reported below.

5.3.1. Verification of system requirements

This step verifies the domain-dependent requirements of in-
terest crafted by engineers as CSL properties upon each individual
model X;. The outcome of this step is a report containing, for
each model, the list of satisfied/unsatisfied requirements to rec-
ognize problematic pairs (X, c) of deployment configurations and
workload intensities. As an example, the CSL properties reported
in Table 3 represent relevant system-level performance require-
ments defined for the Sock Shop case study. These properties
have been verified in our empirical evaluation to assess the
applicability of the approach and the effectiveness in detecting
problematic deployment configurations that might break require-
ments. As an example, Table 5 lists the outcome we obtained by
verifying R;-Rs upon the CTMC models learned from different

testing sessions executed by varying the deployment configu-
ration and the workload intensity. In this example, we keep
fixed the amount of memory and CPU share (8 GB and 25%,
respectively) and we change the number of replicas of the cart
microservice (2 and 4 replicas). Two testing sessions per configu-
ration have been executed by generating a workload intensity of
50 and 300, respectively (i.e., the lowest and the highest intensity
values of the discretized empirical distribution). As shown in
Table 5, the verification outcome is positive (5 out of 5 satisfied
requirements) for the configurations (a) and (b) when the load
intensity is lower (150). With a higher load intensity (300), the
outcome is negative (3 out of five unsatisfied requirements) in
case we adopt (b) 4 cart replicas rather than (a) 2 cart replicas.

5.3.2. Configuration score

This step is used to assess the performance of the SUT as a
whole by evaluating the scalability attitude of each deployment
configuration. Firstly, we generate and verify a number of CSL
properties to measure the performance of each microservice of
the target system. These properties are automatically generated
starting from the template in Eq. (14) that represents a probabilis-
tic constrained response meta-property defined for all service s of
the SUT (e.g., the services reported in Table 1 for Sock Shop).

Z5(T) = P=1[G(s — P=[(sU="=s)])] (14)

The property Z,(T) quantifies the probability that the response
time of the service s is lower than a given parametric threshold
T. Thus, for each service, we instantiate the property and we
use the model checker to compute the probability by varying the
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Table 5

Verification of system-level requirements R;-Rs with two target configurations by varying the workload.
Deployment configuration Workload intensity Rq R, R3 R4 Rs
(a) 8 GB, 25% CPU share, 2 x cart replicas 50 v v v v v
(b) 8 GB, 25% CPU share, 4 x cart replicas 150 v v v v v
(a) 8 GB, 25% CPU share, 2 x cart replicas 300 v v v v v
(b) 8 GB, 25% CPU share, 4 x cart replicas 150 X X v X v

1.00
S(getCustomer)=0.1702
0.75
=
% 0.50
S0
<]
o S(login)=0.0275
0.25
S(getCart)=0.2069
0.00
0 1 2 3 4 5
T(s)

getCart -~ getCustomer login

Fig. 5. Probability curves computed by instantiating =(T).

parameter T. The objective is to conduct a quantitative analysis
of the likelihood of observing a response time up to T, with T
parametric threshold varying between a lower- and upper-bound
Ib and ub, respectively. Even though each curve 2(T) depends
on how the microservice s performs rather than the entire CTMC
model, we adopt the model checker to operationalize the com-
putation of the configuration score and adopt a unified approach
in the whole verification stage. The model checker is used to
automatically produce the cumulative distribution functions of
the response time inferred during the testing sessions, as shown
in Fig. 5. This example illustrates the curves Z(T) computed by
testing Sock Shop under the configuration (b) in Table 5, applying
a workload intensity of 300. The three curves refer to three dif-
ferent microservices: getCart, getCustomer, and login, under
parametric variability of T in [0, 5] s. The performance of the
microservice getCustomer is higher. We can observe that the
probability of observing a response time less than 2 s is close to
one. The other two microservices (i.e., getCart, and login) yield
instead worse performance compared to the former one. The
growth is slower and for both the microservices, the probability
of observing a response time less than 2 s is less than 0.25.

The outcome described above is used as an aid to rank de-
ployment configurations by leveraging the notion of configuration
score. Such a score represents the evaluation of the system as a
whole conducted by analyzing the performance models as de-
fined by Eq. (14). Namely, the score measures the area under the
curve Z(T) for all s, with workload intensity A, as follows:

ub
@(1b, ub) = ZA] 2(T) dT - S(s) (15)

The best deployment configuration yields the CTMC model X;
that maximizes the score ¢, (Ib, ub). Intuitively, for each service,
the bigger the area, the better the performance. Furthermore, the
contribution of each individual service s to the performance of
the system as a whole depends on the frequency of accessing
s, estimated by computing the steady-state probability S(s) from

10

the embedded DTMC model. For instance, according to Fig. 5, the
steady-state probability S(getCart) = 0.2069 is higher than
S(getCustomer) = 0.1702. Hence, poor performance associated
with getCart has higher impact (i.e., higher weight) on the score
¢, compared to the high performance of getCustomer.

Once the configuration score has been computed for each
workload intensity A, we summarize the total score of a configu-
ration by applying a weighted sum over the A values, leveraging
on the frequency of occurrence f(X):

@ (A, Ib, ub) = Z @:(Ib, ub) - f(1)
rEA

As an example, according to the empirical distribution in
Eq. (6) of our case study, the configuration score associated with
A = 200 is the most important (i.e., highest frequency equal
to 0.23) whereas the score associated with A = 300 is the less
important (i.e., lowest frequency equal to 0.06).

(16)

6. Evaluation

We introduce the research questions in Section 6.1 that guided
the evaluation of our approach. We describe the design of the
evaluation in Section 6.2 and then we present the major results
in Section 6.3. We then discuss threats to validity in Section 6.4.

6.1. Research questions

The major goal of the evaluation is to investigate the benefits
and the costs of our approach supported by a software toolchain.”
Starting from this main objective, we aim at answering the fol-
lowing research questions:

RQ1: What is the effectiveness in detecting violations of re-
quirements?

What is the effectiveness of the configuration score in
ranking deployment alternatives?

What is the cost of the model learning process?

What is the cost of the verification process?

RQ2:

RQ3:
RQ4:

6.2. Design of the evaluation

To answer the four research questions, we designed a set of
controlled experiments using Sock Shop as SUT (see Section 4).
The machines used in our in-vitro testing infrastructure have the
following characteristics: load driver node equipped with 4 GB
RAM, 1 core at 2600 MHz; and SUT node equipped with 16 GB
RAM, 4 cores at 2600 MHz. Both machines use magnetic disks
with 15000 rpm and are connected using a shared 10 Gbit/s
network. In our experiments, we adopted the empirical distri-
bution of workload intensity A introduced in Eq. (6) and the
usage profile described in Section 5.1.2. Assuming this operational
setting, we executed a number of testing sessions varying the
factors composing the deployment configuration as described in
Section 5.2: the amount of RAM, CPU share, and service replicas.
Specifically, for each factor, we considered the following values
according to the resource constraints imposed by our in-vitro
testing environment:

5 The implementation of the core stages of our methodology is publicly
available at https://github.com/pptam/pptam-tool. The replication package of
experiments is available at https://doi.org/10.5281/zenodo.5078110.
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Table 6
Deployment configurations.
ID Memory (GB) CPU (% share) #replicas
1 8 50 1
2 8 50 2
3 8 50 4
4 8 25 1
5 8 25 2
6 8 25 4
7 16 50 1
8 16 50 2
9 16 50 4
10 16 25 1
11 16 25 2
12 16 25 4

e amount of RAM in [8 GB, 16 GB];
e CPU share in [25%, 50%];
e number of cart replicas in [1, 2, 4].

The latter point, in particular, is justified by the high volume of
requests directed to the microservice cart during the testing
sessions. Namely, according to the behavior mix represented
by the DTMC model of Sock Shop, the steady-state probability
S(getCart) is the highest one. Therefore, the number of concur-
rent requests directed to this service during the testing sessions
is higher compared to the other services.

The testing sessions executed during the experimental cam-
paign were driven by: the DTMC model reported in Fig. 3; 6
aggregated workload intensity bins A = {50, ..., 300} reported
in Eq. (6); and 12 deployment configurations C listed in Table 6
derived from the combination of the factors listed above. For each
one of the 72 settings in A x C, we executed each testing ses-
sion® multiple times as further discussed below. For each session,
we executed the model learning and then the verification steps
(i.e., the two core stages of our methodology). The model learning
has been executed along with the testing onto the in-vitro testing
environment introduced above, whereas the verification stage has
been executed on commodity hardware, i.e., a laptop equipped
with a 2300 MHz dual-core CPU and 8 GB of RAM. We measured
the effectiveness in terms of verification of performance require-
ments as well as the ability to rank deployment configurations
based on the configuration score. The cost has been measured by
taking into account the number of tests and the resources (exe-
cution time and memory consumption) required by the learning
process and the verification one. Results have been compared to
a ground truth baseline constructed by applying a selected state-
of-the-art scalability assessment approach called Domain Metric
(DM) (Avritzer et al., 2020), as anticipated in Section 1. This choice
is justified by the fact that the DM has been shown effective in
ranking configurations based on the ability to fit the operational
setting. Its applicability has been recently demonstrated in dif-
ferent industrial domains (Avritzer et al., 2021b). Furthermore, it
has been applied to the Sock Shop benchmark by using an in-
vitro testing environment that we were able to replicate during
our experiments, thus enabling a direct quantitative comparison
of results.

6.3. Results

Here we discuss the most relevant results and we refer the
reader to our implementation and dataset for the replicability of
the experiments.

6 In each testing session we adopted a think time modeled as a negative
exponential distribution (with 0 s, 1 s, and 5 s for minimum, mean, and
maximum think time, respectively, and an allowed deviation of 5% from the
defined think time) to represent realistic user behavior as reported in Avritzer
et al. (2020).
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6.3.1. Results for RQ1
What is the effectiveness in detecting violations of requirements?

To address the first research question we conducted a set
of controlled experiments to assess the verification stage of our
approach. Here we focus on the ability of spotting violations
of CSL requirements after the learning stage. Such assessment
has been conducted by following two steps: (i) definition of a
ground truth baseline; and then (ii) comparison of the verification
outcome and the baseline under alternative learned models by
varying the total cost of the learning stage (in terms of number
of executed tests). The ground truth baseline is composed of a
set of CSL requirements’ having known outcome (i.e., either true
or false) for each deployment configuration. More precisely, for
each one of the 72 settings in A x C, we defined 20 system-level
requirements: 10 true properties and 10 false properties. The
value K represents the bounded cost (number of tests) necessary
to achieve our termination condition based on the Bayes factor.
Thus, we observed how the verification outcome changes when
limiting the cost up to K. Specifically, to assess the ability to
detect violations, we verified the baseline properties on the CTMC
models built by limiting the cost as follows: K — 50%, K — 25%,
K — 12%, and K, respectively.

For each run, we measured the number of verification errors in
the following two categories: E (i.e., true outcome for a property
that shall not hold), and E’ (i.e., false outcome for a property that
shall hold). For each deployment configuration (1 to 12) and each
workload intensity (50 to 300), we applied the learning process
by varying the cost (K — 50% to K). Then, for each model, we
verified the 20 baseline properties to compare the verification
outcome with the oracle models. By following this process, we
verified in total 7200 CSL properties for which we recorded E
and E’ occurrences. Fig. 6 shows the major results. For each
deployment configuration, a bar plot shows the rate of E and E’
errors. We can observe the highest error rate occurs with the
lowest number of tests K — 50% (i.e., 0.74 and 0.73 on average
for E and E’, respectively). By increasing the total cost, both E
and E’ decrease down to zero when we set the cost equal to K.
With K — 12% tests, we can observe a low error rate (i.e., 0.1
and 0.09 on average for E and E’, respectively). With this setting,
zero errors occurred in certain cases: 7 out of 12 times in both E
and E’. According to the results in Fig. 6, K represents the safest
choice. In this case, the error rate is zero for all the deployment
configurations.

After the assessment described above, we verified the system-
level requirements R1-Rs in Table 3 upon all models learned with
total cost K to detect violated requirements when varying the
workload intensity for each available deployment configuration
of Sock Shop. The results of these experiments are reported in
Table 7. We can observe that up to 100 concurrent users, all
the configurations meet the performance requirements. From the
workload intensity 150 to 300, we can observe instead a number
of violations. In particular, we found that 6 out of 12 configura-
tions do satisfy all the requirements, and increasing the number
of replicas does not always guarantee better performance. Ac-
cording to our results, the system supports more than 2 cart
replicas only when the CPU share is at least 50%.

RQ1 summary: the termination condition based on the Bayes
factor represents an effective method. The results show that
K tests are enough to learn the performance models with
high accuracy. Further reduction of the total cost is likely to
cause verification errors. The verification stage can be used by

7 The CSL requirements composing the ground truth baseline are available in
the replication package of the evaluation.
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Fig. 7. Scores computed considering the 12 target configurations.

engineers to understand performance issues and trace them
back to requirements. Furthermore, automated verification
can be used as an aid to prevent problematic configurations
from being adopted in production. We were able to spot 6
out of 12 deployment configurations that do not meet all the
performance requirements.

6.3.2. Results for RQ2
What is the effectiveness of the configuration score in ranking de-
ployment alternatives?

This research question aims at investigating the ability of our
methodology to detect both problematic deployment configura-
tions based on the configuration score introduced in Section 5.3.
We addressed this question by computing the individual score
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Table 7

Verification of system-level requirements per configuration and workload intensity.

The Journal of Systems & Software 187 (2022) 111225

Configuration Workload intensity Ry R R3 Ry Rs Configuration Workload intensity Rq R, R3 Ry Rs
50 v v v v v 50 v v v v v

100 v v v v v 100 v v v v v

1 150 X X v X v 5 150 v v v v v
200 X v v v v 200 v v v v v

250 X v v v v 250 v v v v v

300 X X v v v 300 v v v v v

50 v v v v v 50 v v v v v

100 v v v v v 100 v v v v v

3 150 v v v v v 4 150 X X v X v
200 v v v v v 200 X v v v v

250 v v v v v 250 X X v v v

300 v v v v v 300 X X v X v

50 v v v v v 50 v v v v v

100 v v v v v 100 v v v v v

5 150 v v v v v 6 150 X X v X v
200 v v v v v 200 X X v v v

250 v v v v v 250 X X v X v

300 v v v v v 300 X X v X 4

50 v v v v v 50 v v v v v

100 v v v v v 100 v v v v v

7 150 v v v v v 3 150 v v v v v
200 X X v X v 200 v v v v v

250 X X v X v 250 v v v v v

300 X X v v v 300 v v v v v

50 v v v v v 50 v v v v v

100 v v v v v 100 v v v v v

9 150 v v v v v 10 150 X X v v v
200 v v v v v 200 X X v X v

250 v v v v v 250 X X v X v

300 v v v v v 300 X X v X v

50 v v v v v 50 v v v v v

100 v v v v v 100 v v v v v

1 150 v v v v v 12 150 v v v v v
200 v v v v v 200 X v v v v

250 v v v v v 250 X X v X v

300 v v v v v 300 X X v v v

@, for each testing session in A x C as well as the total one @
for each configuration in C. For each session, we instanced the
meta-property Z(T) reported in Eq. (15) for all the microservices
of Sock Shop by varying the parametric threshold T from 0 to
5 with a step of 0.1 s. Thus, we automatically generated 50
CSL properties for each one of the 19 microservices. In total,
5700 properties have been generated to compute ¢; for all A €
A, and 68400 properties have been generated to compute @
for all configurations. To assess whether the configuration score
represents a suitable metric we checked whether the results
are consistent with the verification of system-level requirements
in Table 7. Furthermore, we compared them to a ground truth
baseline constructed by applying the DM scalability assessment.

Fig. 7(a) shows the outcome of the computation of ¢,(0, 5),
whereas Fig. 7 shows the total score @(A, 0, 5). Consider the
heat-map in Fig. 7(a). The configuration score is high for all the
configurations under a workload intensity up to 100 (average
score equal to 0.98). From 150 to 300 users we observe a degra-
dation of the performance denoted by a lower configuration score
(average score equal to 0.88). Some of the configurations are
likely to exhibit lower scores. As an example, the scores observed
with configuration 5 are higher than or equal to 0.9, whereas
configuration 6 yields scores lower than 0.9 in 4 out of 6 workload
intensity bins. Such a difference is visible by observing the total
score shown in Fig. 7 through a bar plot. Here we can see a
substantial gap between configurations 5 and 6. The former one
is likely to better fit the target operational setting since the total
score is almost 10% higher. The total score reported in Fig. 7
is (mostly) consistent with the verification outcome reported in
Table 7. The six configurations that meet all the system-level
requirements are R{-Rs. These configurations map to the highest
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total score (~0.94). The lowest score has been assigned to con-
figuration 6 (i.e., 8 GB memory, 25% CPU share, 4 replicas). Such
a result is comparable to what has been shown through the DM
approach reported in Avritzer et al. (2020). In particular, the top
scores we found in our experiments are the configurations that
better fit the operational setting according to the DM.

It is worth noting that the total score reported in Fig. 7 yields
aggregate information that cannot reasonably be used to identify
the punctual CSL requirements that hold or do not hold. Indeed,
requirements might predicate on microservices whose weight is
low according to the usage profile. In this case, low performance
exhibited by these services may have little impact on the total
score even though they invalidate requirements. For instance,
according to Fig. 7(a), configurations 1 and 4 exhibit a comparable
score under workload intensity 250 (0.89 and 0.88, respectively),
but configuration 4 does not meet R, which instead holds with
configuration 1 (see Table 7). Furthermore, under workload in-
tensity 300, configuration 4 yields a lower score compared to
configuration 1 (0.77 and 0.88, respectively). However, this has
a small impact on the total score since, according to Eq. (6),
the frequency associated with intensity 300 is the lowest one
(0.06). In Fig. 7, we can observe that even if the total score of
configuration 4 is higher with respect to configuration 1, the
latter one satisfies a higher number of requirements across the
workload intensities, as reported in Table 7.

Based on our results and the related discussion reported above,
the computation of the total score cannot substitute the ver-
ification of system-level requirements but provides engineers
with complementary information. Specifically, the score can be
used to extract insights on scalability issues depending on the
configuration parameters. According to Fig. 7, we can observe that
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horizontal scaling does not guarantee better performance. With
the resource constraints imposed by our in-vitro testing infras-
tructure, resources allocated to vertical scaling are not enough to
support more than 2 microservice replicas when less than 50%
CPU share is adopted.

RQ2 summary: we observed that a lower total score is likely
assumed to be a bad smell of worse performance. Never-
theless, since the score holds aggregate information it is not
enough to determine to what extent system-level require-
ments are satisfied. Therefore, the computation of the score
cannot substitute the verification of requirements, but it pro-
vides engineers with complementary insights. Indeed, the
score can guide engineers during the final “go live” decision
gate in the selection of the deployment configuration. Ac-
cording to our results, we spot problematic combinations of
configuration parameters that are likely to reduce the score.
We found that vertical resources are not enough to support
more than 2 microservice replicas when less than 50% CPU
share is adopted.

6.3.3. Results for RQ3
What is the cost of the model learning process?

This research question aims at quantifying the total cost re-
quired by the testing sessions in terms of total number of tests
(i.e., number of requests issued to microservices) as well as the
execution time needed to achieve termination. To address this
question, we conducted a set of experiments by taking control
over the prior knowledge which represents the factor having
major impact on the Bayesian inference carried out during the
learning stage. Namely, for each deployment configuration, we
executed a number of testing sessions by varying the HDR mag-
nitude of the prior knowledge. As introduced in Section 3, the
HDR magnitude represents in Bayesian inference the degree of
confidence. The smaller the magnitude, the higher the confidence.
Thus, we constructed 5 different priors where we embedded in-
cremental knowledge to reduce the HDR magnitude. To build the
priors we first executed the inference process using an uninfor-
mative one (i.e.,, HDR reduction equal to 0%). During the inference,
we computed the HDR of the posterior density function. Thus,
we extracted the posteriors having magnitude reductions of 20%,
40%, 60%, and 80% with respect to the initial uninformative one.
With this process, we essentially built our prior knowledge (with
different levels of accuracy) based on past observations. Thus, we
executed a testing session for each prior, and each element in
A x C for a total of 360 testing sessions.

Fig. 8 shows the total cost measured as the number of tests
needed to achieve termination of the learning stage. In particular,
Fig. 8(b) shows the cost by grouping the testing sessions by
memory configurations. Fig. 8(c) shows the cost grouping by CPU
share configurations. Fig. 8(d) shows the cost grouping by replica
configurations. Results show that the HDR magnitude affects the
total effort. Considering all the configurations, we can observe
on average 32k tests when using uninformative priors. When
reducing the HDR magnitude by 80% (i.e., highest confidence) we
observe on average 17k tests (i.e., total cost reduced by 53%).
Considering vertical scaling, we can observe that fewer resources
(both memory and CPU) impact negatively on the predictability
of the cost. For instance, considering 16 GB memory in Fig. 8(b),
the average difference between the 1st and 4th quantiles is 16k.
Considering instead 8 GB memory, such a difference increases up
to 26k. The same observation holds for Fig. 8(c). For instance, with
50% CPU share, the average difference between the 1st and 4th
quantiles is 7k. Considering instead 25% CPU share, the average
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difference increases up to 26k. The same trend does not hold
for horizontal scaling. Here, we observe lower predictability with
higher replica values. The average difference between the 1st and
4th quantiles are: 1k with 1 replica, 15k with 2 replicas, and 19k
with 4 replicas.

Fig. 9 shows the total cost measured in terms of execution
time needed to achieve termination of the learning stage taking
into account all the deployment configurations. Consistently with
the results shown in Fig. 8, the reduction of the HDR magnitude
leads to a decrease in the number of tests and total execu-
tion time. Specifically, each testing session lasts on average from
~13 to ~8 min when reducing the HDR magnitude of the prior
knowledge up to 80%.

A comparison between the cost of our approach and the cost
of the ground truth baseline (i.e., the DM approach) shows the
convenience of our proposal in terms of cost-effectiveness. In par-
ticular, as shown in Fig. 8(a) and reported in Avritzer et al. (2020),
each testing session that applies the DM assessment requires
~ 65k tests to achieve termination. By running our experiments
we observed an average of 51% fewer tests in the worst case
(i.e., when using uninformative priors) an average of 73% fewer
tests in the best case (i.e., when using accurate priors). As re-
ported in Fig. 9, the execution time required by each testing
session is on average reduced by ~17 in the worst case and
~22 min in the best case.

The decreased cost is due to our termination condition driven
by the Bayes factor. Namely, it allows each testing session to be
stopped as soon as inferred model parameters are statistically
stable. As reported in Jiang and Hassan (2015), statistic-driven
techniques ensure the accuracy of the collected data and are su-
perior to termination techniques based on pre-defined static con-
figurations (i.e.,, continuous, timer-driven, and counter-driven)
adopted by the DM approach.

RQ3 summary: the prior knowledge has a major impact on
the total effort: the smaller the HDR magnitude, the lower the
effort. Both vertical and horizontal scaling is likely to affect
the predictability of the effort. The comparison between our
approach and the selected state-of-the-art baseline shows that
we were able to reduce the number of tests up to 51% when
using uninformative priors and up to 73% when using accurate
priors. The execution time required by each testing session
is on average reduced by ~17 min in the worst case and
~22 min in the best case.

6.3.4. Results for RQ4
What is the cost of the verification process?

This research question aims at quantifying the total cost re-
quired by the verification stage of our methodology. In partic-
ular, we focus here on the computational resources (execution
time and memory) needed during the verification stage. This
phase of our methodology requires the usage of the probabilistic
model checker to verify a non-negligible amount of properties: (i)
system-level CSL requirements; and (ii) CSL properties generated
from the template Z,(T) in Eq. (14). We addressed this question
by measuring the resources needed by the PRISM model checker
to verify both types of properties. Fig. 10 shows the results of
our experiments through bar plots. Figs. 10(a) and 10(b) refer to
the verification of system-level requirements reported in Table 3
(execution time and memory consumption per individual config-
uration, respectively). Each bar in the two plots has been created
accounting for the verification of 30 properties (i.e., 5 properties
for each A € A). Considering all the configurations, we measured
the resources needed to verify a total of 360 properties. Fig. 10(c)
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(execution time) and Fig. 10(d) (memory consumption) refer to
the verification of the properties needed by the computation of
the configuration score ¢, for each A € A. In this case, each bar
in the two plots has been created accounting for the verification
of 5700 properties (i.e., 950 properties for each 1 € A), for a total
of 68400 properties, considering all the configurations.
Concerning system-level requirements, Fig. 10(a) shows that
each CSL property requires at most ~ 1 s for all configurations.
Thus, according to our results, the verification of all the require-
ments for all the configurations took, in our case ~ 1 min. The
memory consumption reported in Fig. 10(b) is at most ~ 34 KB
per individual requirement and all the configurations. Concerning
the configuration score, Fig. 10(c) shows that the time required
by the computation of ¢, is always less than 1 s with a median
value less than 0.2 s. Assuming the worst-case scenario where
each ¢, takes 0.8 s, the computation of the total score @ takes less
than 2 min (~72 s). The memory consumption per deployment
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configuration is shown in Fig. 10(d). We can observe that the
memory required by the computation of ¢, is always less than
50 KB with a median value less than 3 KB.

RQ4 summary: the computational resources required by the
verification process have been measured by verifying 360
system-level CSL requirements and 68400 CSL properties
automatically generated from the meta-property Z(T) to
compute ¢; for all A. Results show negligible execution time
and memory consumption. We observed that the verification
of all the requirements for all the configurations took, in our
case, less than a minute by consuming at most ~34 KB. The
computation of the total score @ takes ~72 s in the worst
case, whereas the worst-case memory consumption is 50 KB.

6.4. Threats to validity

In the empirical evaluation of our methodology, we identified
and mitigated major threats to validity in the categories external,
internal, conclusion, and construct as described in the following.

6.4.1. External validity

Threats to external validity have been addressed by selecting
a representative microservices benchmarking system, as antic-
ipated in Section 4. Sock Shop has been recently adopted as
SUT by recent scalability assessment approaches tailored to mi-
croservices, such as the DM approach (Avritzer et al., 2020). This
enabled direct quantitative comparison of the results we obtained
during our empirical evaluation, as described in Section 6.3. Our
selected SUT also makes use of a common technology stack
usually adopted in our target domain of interest. Namely, our in-
vitro testing environment supports microservices deployed onto
Docker containers running in turn onto virtual machine cores. It
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Fig. 10. Cost of the verification stage in terms of resources (time and memory).

is worth noting that our approach needs to work with a pre-
production deployment where we can have full control over
the testing environment and the deployment configuration. This
setting is common in DevOps practices and tools in modern in-
frastructure that support continuous deployment (Bertolino et al.,
2020). Additional generalization of our findings in other applica-
tion domains requires experimental activities with a diverse set
of case studies.

6.4.2. Internal validity

To reduce threats to internal validity, we designed a number
of controlled experiments (to assess both the model learning and
the verification stages) by detailing the independent variables of
interest we controlled during the experiments. In particular, our
in-vitro testing environment, as well as the software toolchain
implementation of the main stages, allow for direct access to:
distribution of the workload intensity, usage profiles, behavior
mix, deployment configuration, and prior knowledge. This direct
manipulation has been fundamental to assess cause-effect rela-
tions between external factors and both benefits and costs of our
approach.

6.4.3. Conclusion validity

Since testing sessions are guided by a stochastic sampling
of user categories, there exists the possibility that results have
been produced by chance. We addressed this threat to conclusion
validity by following the practical guidelines introduced in Arcuri
and Briand (2011). In particular, we sampled a large number of
invocations per individual microservice. Each individual testing
session, depending on the prior knowledge, sampled between
~ 5k and ~ 50k requests. Furthermore, we assessed the statistical
stability of the inferred CTMC parameters using the Bayes factor,
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as detailed in Section 5. During the evaluation of the verifica-
tion stage, we adopted the PRISM model checker to verify a
large number of CSL properties generated from the meta-property
Zs(T). Namely, our conclusion on the cost (time and memory) has
been drawn by observing the verification of 68400 properties to
compute the total configuration score.

6.4.4. Construct validity

We addressed major construct validity threats by assessing the
metrics used during our experiments to measure both the effec-
tiveness and the cost of our methodology. The cost of each testing
session has been measured by considering the number of tests
(i.e., issued requests in our case) and the execution time required
to achieve termination. These metrics are often adopted to assess
testing methods as described in Arcuri and Briand (2011). The
cost of the verification stage has been measured by accounting for
execution time and memory consumption. Again, these metrics
represent a de facto standard to measure the performance of
model checking activities, as described in Katoen et al. (2001).
The effectiveness of the model learning stage has been measured
by collecting verification errors and then by assessing the ability
to minimize them. To measure the confidence of the inference
process, we adopted the HDR magnitude which yields the highest
possible accuracy in estimating the parameters of a stochastic
phenomenon of interest. As described in Robert (2007), this mea-
sure is traditionally accepted in Bayesian statistics as a sensible
metric.

The applicability of our approach highly depends on the accu-
racy of the target operational setting under consideration. There-
fore, we consider a careful analysis of the production usage as a
precondition of the application of our methodology. As discussed
in Vogele et al. (2018), automated techniques can be used to deal
with this threat. Namely, DTMC behavioral models describing the
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users can be extracted from recorded session logs of production
systems using unsupervised learning, such as clustering algo-
rithms. Therefore, while some specific results on the assessment
of Sock Shop depend on the settings described in Section 5.1, the
insights and the discussion of benefits and costs of the core stages
of our methodology can be generalized.

7. Related work

To the best of our knowledge, our work introduces the first
tool-supported methodology for inferring and verifying CTMC
models of microservices systems out of automated load testing
sessions. We discuss the related work according to the three
key aspects upon which our approach builds: load testing, model
learning, and verification of microservices systems.

7.1. Load testing

Existing load testing approaches focus on either the detection
of functional problems that manifest themselves at certain work-
load intensities (e.g., deadlocks, race conditions, memory leaks) or
violations of non-functional quality-related requirements under
loads (e.g., reliability, robustness, performance) (Avritzer et al.,
2018; Jiang and Hassan, 2015; Avritzer and Weyuker, 1995).
In either case, load testing is typically executed by simulat-
ing the users’ behavior at different loads (Avritzer et al., 2018,
2020). To this aim, Application Performance Management (APM)
tools (Ahmed et al., 2016) are commonly used in practice to mine
operational data and extract representative workload models.
While most of these approaches focus on system-level testing, al-
gorithms for testing single microservices and their integration are
recently emerging to fit modern development practices (Schulz
etal, 2019). In our methodology, we execute load testing sessions
to learn a CTMC model and then carry out formal verification of
system-level performance requirements. To this end, we define
load testing objectives formally based on the user needs by
encoding requirements as system-level CSL properties crafted by
engineers during the early design stages. As described in Jiang
and Hassan (2015) and Ho et al. (2008), such objectives are not
always defined in a rigorous way and they may also emerge late,
after an initial observation period, by establishing the baseline
performance of a software version, which is then used to compare
the load testing results of later software versions (Eismann et al.,
2020).

Quantifying performance requirements is the basic building
block of the Domain Metric approach (Avritzer et al., 2018, 2020)
that we have used as a baseline for comparison in our eval-
uation. The pass/fail criterion of testing sessions presented in
this work is extracted empirically (Pozin and Galakhov, 2011)
by observing the system under specific low load conditions and
then extracting a performance threshold that defines outlier mi-
croservices. Differently from our approach, this work assumes
that under low load, the system fulfills the requirements. Under
this assumption, the average performance under increasing work-
load intensity is then evaluated against such a threshold. This
approach is particularly useful in exploratory studies where per-
formance requirements are not available (Menascé and AF, 2002).
The performance score adopted by our methodology extends the
baseline Domain Metric introduced in Avritzer et al. (2018) by
computing, for each microservice, the likelihood of observing a
response time in between a lower-bound and an upper-bound
defined on human perceptual abilities (Nielsen, 1994).

The use of Markov models to drive load testing of service-
based and web applications is not new (Menascé et al., 1999;
Mark and Csaba, 2007). The authors introduce the notion of
Customer Behavior Model Graphs, which is a DTMC enriched with
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domain-specific aspects. Similar to our approach, user sessions
are used to identify the states in the Markov model (i.e., user
interaction with the system such as service requests), and tran-
sitions between these states, annotated with probabilities. The
WESSBAS approach adopts workload characterization and extrac-
tion by combining DTMC and Finite State Machine models (Vogele
et al,, 2018). Our method captures the behavior of users and
then drives the load testing sessions through the notion of be-
havior mix which identifies and mixes different user categories
defined as sequences of valid requests to available microservices.
As described in Menascé et al. (1999) and Vogele et al. (2018),
clustering algorithms can be conveniently leveraged to automate
the identification of different customer groups and then create
the user categories (Menascé et al., 1999).

Another key aspect characterizing load testing sessions is
the termination condition. The termination is usually decided
by a controller component belonging to the load driver node
which coordinates one or more distributed nodes where the SUT
is deployed (Dumitrescu et al., 2004). Termination techniques
based on pre-defined configurations, such as timer-driven and
counter-driven are common in many existing load testing ap-
proaches (Stankovic, 2006). Our approach is based on the notion
of statistic-driven termination that was introduced to overcome
the shortcomings of these approaches and ensure the validity or
accuracy of the data (Snellman et al,, 2011). This means that a
load testing session terminates when the performance metrics of
interest are statistically stable according to a high confidence in-
terval or a small standard deviation as described in Snellman et al.
(2011) and Mansharamani et al. (2010). Our approach differs from
these available techniques since it is based on the convergence
of the Bayes factor that detects when the inferred parameters
of the CTMC model are statistically stable and therefore, further
refinement is not needed.

7.2. Model learning

Model learning techniques have been receiving increased at-
tention from the software engineering community (Aichernig
et al., 2018). These techniques are usually categorized as either
passive or active. Passive learning mines historical datasets such
as available system logs. Active learning queries the SUT by
means of suitable testing activities and is usually considered more
efficient, (Smeenk et al,, 2015) and it is referred to as test-based
learning. Our approach falls in this category and is inspired by
recent literature that leverages probabilistic methods to model
and reason in a quantitative way about QoS attributes of the
target system (Zhang et al., 2019; Perez-Palacin and Mirandola,
2014; Camilli et al., 2018; Camilli et al., 2021). In this context,
the usage of Markov models is a common choice justified by the
practical need of approximating stochastic phenomena of interest
(e.g., performance, reliability). The METRIC approach introduced
in Camilli et al. (2017, 2020) applies a test-based learning tech-
nique to derive a full specification of the SUT as Markov Decision
Processes to increase the level of assurance by verifying system-
level requirements after accounting for runtime evidence. From
this perspective, our methodology is conceptually similar, since it
leverages testing to derive a model which is then verified against
formal requirements. Nevertheless, the major objective of METRIC
is different since it focuses on reliability aspects that may be
affected by uncertain environmental factors like the failure of
third-party services.

Continuous inference of categorical distributions has been pro-
posed in Filieri et al. (2016, 2015), to learn transition proba-
bilities of a DTMC model. Like our methodology, these latter
approaches adopt Bayesian inference, but they use aging mecha-
nisms (e.g., Kalman filters Astrom and Wittenmark, 1990) to dis-
card old information and rapidly detect occurring changes. This
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method is particularly suitable for continuous inference of QoS
attributes in production (rather than testing) to cope with evolv-
ing usage behaviors and environmental conditions. Other Markov
models, such as Hierarchical Hidden Markov Models (Fine et al.,
1998) have been recently adopted. For instance, the DLA (De-
tecting and Localizing Anomalies) framework introduced in Samir
and Pahl (2019) uses different workload intensity bins to test
and learn the behavior of the target system as in our approach.
By contrast, DLA detects the variation in response time and cor-
relates it to the respective component (microservice, container,
service), which yields anomalous behavior. In this case, the ul-
timate goal is to detect and locate the anomalies, such as CPU
Hog, memory leak, and network congestion. Efficiency analy-
sis of microservices provisioning based on a CTMC modeling
approach has been introduced in Khazaei et al. (2016). Even
though our methodology adopts the same modeling formalism,
the approach and the main goals are different. The work pre-
sented in Khazaei et al. (2016) targets Infrastructure-as-a-Service
cloud providers in order to model container and virtual machine
provisioning and request arrival rate over time. Differently, our
methodology focuses on the inference of the probability density
functions describing the response time associated with each in-
dividual microservice. The density functions are then encoded as
parameters of the CTMC models adopting the standard assump-
tion that service execution times are exponentially distributed.
A similar approach has been recently adopted by the framework
OMNI (Paterson and Calinescu, 2020). Like our methodology,
OMNI supports learning and verification of system-level QoS re-
quirements, but it uses phase-type distributions (PHDs) to refine
the relevant elements of a CTMC model. Although PHDs can
arbitrarily close approximate any continuous distribution with
a strictly positive density, (O’cinneide, 1999), fitting a PHD to
heavy-tailed distributions requires extremely large samples and it
is generally more expensive than applying the Bayesian updating
rule adopted by our approach.

7.3. Verification of microservices systems

Behavioral types, choreographies, refinement types, and other
(semi-) formal behavioral models have been proposed to specify
and verify large distributed service-based systems. The research
community is still active on these topics and much has to be
discovered and developed to support microservices engineer-
ing (Dragoni et al., 2017). Formal methods based on well-known
techniques represent a promising approach for tackling the chal-
lenges of delivering microservices systems in compliance with
rigorous requirements. Nevertheless, how exactly these disci-
plines can be extended to naturally capture the practical needs
in the domain of microservices requires further investigation as
advocated by the work presented in Dragoni et al. (2017) and
Camilli (2020). The approach introduced in Wadler (2012) is
grounded on logical reconstruction of behavioral types in classical
linear logic. Another logical characterization of choreography-
based behavioral types has been proposed in Carbone et al.
(2017). This latter approach aims at specifying and verifying
existing interactions amongst multiple microservices using well-
known techniques for logical reasoning (Caires and Pérez, 2016).
A model-driven engineering approach to support microservices
engineering, through formal specification and verification activ-
ities using Petri Nets, has been recently introduced in Camilli
(2020) and Camilli et al. (2018b,a). These approaches are tailored
to design-time specification and analysis of the expected behavior
of target microservices. Thus, they lack feedback from runtime
evidence to learn or refine the initial specification of the system.
As such, our methodology enhances QoS analysis through the
learning process that can prevent invalid engineering decisions
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based on design-time CTMC analysis. This approach is inspired
by existing software performance engineering methods used to
decide a feasible service-level agreement after collecting run-
time evidence (Woodside et al., 2007). A similar perspective is
adopted by the OMNI approach (Paterson and Calinescu, 2020).
OMNI requires the collection of component observations either
by testing the intended system components (or services), or
by monitoring other systems that use these components. The
refined CTMC models generated by OMNI are then analyzed with
probabilistic model checkers, such as PRISM (Kwiatkowska et al.,
2011), also adopted by our software toolchain. Both OMNI and
our methodology support the verification of a broad spectrum
of system-level performance requirements specified in CSL (Baier
et al.,, 2003).

8. Discussion

Microservices systems are calling for novel quality assurance
approaches that, on the one hand, can seamlessly be integrated
into modern development practices and, on the other hand, pro-
vide strong, ideally provable assurances. To this aim, we have
introduced a novel framework for test-based learning and veri-
fication of microservices systems. In this section, we discuss the
advantages and limitations of our framework to pave the way for
further research.

8.1. Strengths

Rigorous foundation. Interaction between development and oper-
ations emerged in the software industry as an important principle
while supporting the engineering life-cycle of microservices sys-
tems. These phases are often interleaved and should lead to
incremental quality improvements to better fit customer needs.
Our experience shows how information extracted from opera-
tions can drive automated test-based learning and verification
processes supported by off-the-shelf tools. This means that formal
aspects are hidden from engineers operating the toolchain. The
DTMC model driving the testing sessions is automatically derived
from the definition of the user categories. The testing process
feeds the inference module that builds the CTMC models by
applying fully automated machinery. Then, the model checker
is used as a black box to automatically verify the CTMC mod-
els and obtain the configuration score. Our work contributes
to the advance of common performance testing practices with
rigorous methods to ultimately achieve high quality with strong
guarantees.

Strong assurances with limited cost. State of the art model check-
ers, such as PRISM (Kwiatkowska et al., 2011), and Storm (Dehn-
ert et al,, 2017) have been continuously improved and extended
with efficient analysis techniques, like symbolic approaches (Ka-
toen et al.,, 2001) that yield fast and scalable verification of sys-
tems whose state space has an order of magnitude up to 10°
or 107. By contrast, the number of microservices of real-world
applications is relatively smaller. As an example, Netflix recently
declared that, even though the total number of microservices
in their systems is around 500, their workflows are made of
6 services on average, with the largest one composed of 48
services (Netflix, 2016). In our methodology, the number of mi-
croservices determines the structural complexity (i.e., number of
states and transitions) of the CTMC models that are then verified
against system-level requirements. Since the scale of operation of
state-of-the-art model checkers is much higher, this represents
a great opportunity to achieve strong assurances with a limited
cost, as shown by our evaluation.
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Requirements traceability. Our approach allows engineers to fol-
low the life of system-level requirements in both forward and
reverse directions. In particular, they define meaningful CSL prop-
erties according to the business goals of the target application.
Then, automated verification traces performance issues back to
unfulfilled requirements. This allows engineers to spot workflows
(and related microservices) responsible for the (un)achievement
of specific goals that are relevant for the business logic of the
target system.

Guidance at decision gates. The configuration score provides engi-
neers with additional insights. Given a number of configurations
satisfying the requirements, engineers can choose and deploy
the one associated with the highest score that yields the best
fitness according to the target operational setting. Furthermore,
our experience shows that by comparing the scores, we can
understand how parameters of the configuration are likely to
affect the fitness. According to our results, we understood that
vertical resources of our in-vitro setting are (in some cases) not
enough to scale horizontally with a number of service replicas
greater than specific thresholds.

8.2. Limitations

Nontrivial definition of accurate priors. Although our experience
shows that uninformative priors lead to outperforming existing
methods, leveraging the prior knowledge can help in reducing,
even more, the overall cost of the testing process by limiting the
number of tests required to achieve termination. Transferring the
prior knowledge into accurate prior density functions may not be
perceived as straightforward since this activity requires skills in
probabilistic methods. In this case, tools for interactive (machine-
assisted) elicitation of prior density functions may be adopted to
mitigate this issue (Morris et al., 2014).

Combinatorial explosion of configurations. The cost of testing all
possible execution contexts for a target system is subject to a
combinatorial explosion. At the current stage, our methodology
does not explicitly deal with this issue. For this reason, the
design of the domains A (workload intensity) and C (deploy-
ment configurations) requires particular attention to limit the
total amount of load testing sessions. In our experiments, we
aggregated the workload intensity by using data binning. We also
limited the number of deployment configurations to be tested
exploiting our domain knowledge. We focused on discrete sets of
CPU percentage values, amount of memory, and the number of in-
stances of a single microservice cart, which is the one associated
with the highest steady-state probability according to the DTMC
model. When no domain knowledge is available, engineers may
follow, for instance, coverage-oriented (Siegmund et al., 2012)
or distance-based sampling (Kaltenecker et al.,, 2019) strategies
to select a small representative sample of configurations to be
tested.

Missing information or unexpected changes. The outcome of the
verification stage heavily relies on the rigorous definition of the
user categories and the behavior mix that reflect our assumptions
on the execution context. A cold start might imply that such
pieces of information are missing. In this case, the DTMC model
may represent an initial guess (e.g., based on past experience
with similar systems) and therefore, the overall usefulness of the
approach inevitably decreases. Furthermore, sudden and unex-
pected changes in the usage profile, as well as workload intensity,
can lead to situations that have not been tested. For this reason,
continuous monitoring of the system in production is necessary
to detect such changes and then run again the core stages in the
forthcoming development cycles. This practice is becoming more
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and more common since the cost of an exhaustive exploration
of all possible scenarios and execution contexts is too high and
it does not match the agile attitude typically applied in modern
engineering life-cycles. Thus, continuous monitoring shall com-
plement the core stages of our methodology to learn from the
history of recent executions and improve our knowledge on the
usage profile that is prone to change dynamically.

9. Conclusion

In this paper, we introduced a novel approach to test-based
model learning and verification of microservices systems under
alternative deployment configurations. Our methodology com-
bines specification-driven load testing sessions and Bayesian in-
ference to learn a performance model of the target microservices
system in terms of a CTMC. The CTMC formal description is then
used to verify CSL requirements and rank the available deploy-
ment configurations based on the notion of configuration score
that aims at evaluating how well the SUT fits the expected op-
erational setting under increasing workload intensity. The whole
approach is supported by a software toolchain implementation
that has been released publicly to encourage the adoption and
repetition of experiments.

Our evaluation conducted on a representative microservices
system benchmark for the research community, shows major
benefits, costs, and threats to validity of the core stages of our
methodology. We have shown that rigorous engineering methods
can be used to improve the cost-effectiveness of performance
assessment methods for microservices systems. In particular, the
model learning automatically terminates the testing process as
soon as inferred model parameters are statistically stable to avoid
verification errors and, at the same time, reduce the total cost. A
quantitative comparison between our approach and the Domain
Metric baseline (i.e., an existing state-of-the-art scalability assess-
ment approach) shows that we were able to reduce the number
of tests up to 51% when using uninformative priors and up to
73% when using accurate priors. The execution time required by
each testing session is on average reduced by ~ 17 and ~ 22 min,
respectively.

Our experience in operating our methodology shows that it
can be successfully applied to spot performance issues and trace
them back to requirements in order to support automated de-
cision gates. The configuration score complements the verifica-
tion of requirements by identifying relations between configu-
rations parameters and the overall performance of the system.
For instance, we found that the physical constraints of our in-
vitro environment limited the ability to apply horizontal scaling.
Specifically, we observed a performance degradation when more
than 2 microservice replicas were adopted with less than 50% CPU
share. Both the verification of requirements and the computation
of the configuration score are supported by off-the-shelf tools
that require negligible execution time and memory consumption.
In our experiments, we observed that the verification of 360
system-level CSL requirements took ~ 1 min by consuming at
most 34 KB. The computation of the total score involved the
verification of 68400 (automatically generated) CSL properties
that required ~72 s and at most ~50 KB.

We plan to extend the methodology by adding a
pre-processing stage by using parametric model checking (Hahn
et al,, 2010). The pre-processing aims at identifying preconditions
on the variability of the parameters in the CTMC model that meet
the satisfaction of the system-level requirements. As described
in Camilli and Russo (2020), this latter approach has the potential
of further reducing the cost of the testing process by terminating
it as soon as violations are verified at runtime.
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