1,118 research outputs found

    Nanopillar Arrays on Semiconductor Membranes as Electron Emission Amplifiers

    Full text link
    A new transmission-type electron multiplier was fabricated from silicon-on-insulator (SOI) material by integrating an array of one dimensional (1D) silicon nanopillars onto a two dimensional (2D) silicon membrane. Primary electrons are injected into the nanopillar-membrane system from the flat surface of the membrane, while electron emission from the other side is probed by an anode. The secondary electron yield (SEY) from nanopillars is found to be about 1.8 times that of plane silicon membrane. This gain in electron number is slightly enhanced by the electric field applied from the anode. Further optimization of the dimensions of nanopillars and membrane and application of field emission promise an even higher gain for detector applications and allow for probing of electronic/mechanical excitations in nanopillar-membrane system excited by incident particles or radiation.Comment: 4 figure

    Residual disorder and diffusion in thin Heusler alloy films

    Full text link
    Co2FeSi/GaAs(110) and Co2FeSi/GaAs(111)B hybrid structures were grown by molecular-beam epitaxy and characterized by transmission electron microscopy (TEM) and X-ray diffraction. The films contained inhomogeneous distributions of ordered L2_1 and B2 phases. The average stoichiometry was controlled by lattice parameter measurements, however diffusion processes lead to inhomogeneities of the atomic concentrations and the degradation of the interface, influencing long-range order. An average long-range order of 30-60% was measured by grazing-incidence X-ray diffraction, i.e. the as-grown Co2FeSi films were highly but not fully ordered. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were found using dark-field TEM images taken with superlattice reflections

    Helium irradiation effects in polycrystalline Si, silica, and single crystal Si

    Get PDF
    Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin (≈55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change

    White Lines and 3d-Occupancy for the 3d Transition-Metal Oxides

    Get PDF
    Electron energy-loss spectrometry was employed to measure the white lines at the L23 absorption edges of the 3d transition-metal oxides and lithium transition-metal oxides. The white-line ratio (L3/L2) was found to increase between d^0 and d^5 and decrease between d^5 and d^10, consistent with previous results for the transition metals and their oxides. The intensities of the white lines, normalized to the post-edge background, are linear for the 3d transition-metal oxides and lithium transition-metal oxides. An empirical correlation between normalized white-line intensity and 3d occupancy is established. It provides a method for measuring changes in the 3d-state occupancy. As an example, this empirical relationship is used to measure changes in the transition-metal valences of Li_{1-x}Ni_{0.8}Co_{0.2}O_2 in the range of 0 < x < 0.64. In these experiments the 3d occupancy of the nickel ion decreased upon lithium deintercalation, while the cobalt valence remained constant.Comment: 6 pages, 7 figure

    Study protocol for a randomised controlled trial of invasive versus conservative management of primary spontaneous pneumothorax

    Get PDF
    INTRODUCTION: Current management of primary spontaneous pneumothorax (PSP) is variable, with little evidence from randomised controlled trials to guide treatment. Guidelines emphasise intervention in many patients, which involves chest drain insertion, hospital admission and occasionally surgery. However, there is evidence that conservative management may be effective and safe, and it may also reduce the risk of recurrence. Significant questions remain regarding the optimal initial approach to the management of PSP

    Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay region

    Get PDF
    The Chesapeake Bay, along the mid-Atlantic coast of North America, is the largest estuary in the United States and provides critical habitat for wildlife. In contrast to point and non-point source release of pesticides, metals, and industrial, personal care and household use chemicals on biota in this watershed, there has only been scant attention to potential exposure and effects of algal toxins on wildlife in the Chesapeake Bay region. As background, we first review the scientific literature on algal toxins and harmful algal bloom (HAB) events in various regions of the world that principally affected birds, and to a lesser degree other wildlife. To examine the situation for the Chesapeake, we compiled information from government reports and databases summarizing wildlife mortality events for 2000 through 2020 that were associated with potentially toxic algae and HAB events. Summary findings indicate that there have been few wildlife mortality incidents definitively linked to HABs, other mortality events that were suspected to be related to HABs, and more instances in which HABs may have indirectly contributed to or occurred coincident with wildlife mortality. The dominant toxins found in the Chesapeake Bay drainage that could potentially affect wildlife are microcystins, with concentrations in water approaching or exceeding human-based thresholds for ceasing recreational use and drinking water at a number of locations. As an increasing trend in HAB events in the U.S. and in the Chesapeake Bay have been reported, additional information on HAB toxin exposure routes, comparative sensitivity among species, consequences of sublethal exposure, and better diagnostic and risk criteria would greatly assist in predicting algal toxin hazard and risks to wildlife

    The Clumping Transition in Niche Competition: a Robust Critical Phenomenon

    Full text link
    We show analytically and numerically that the appearance of lumps and gaps in the distribution of n competing species along a niche axis is a robust phenomenon whenever the finiteness of the niche space is taken into account. In this case depending if the niche width of the species σ\sigma is above or below a threshold σc\sigma_c, which for large n coincides with 2/n, there are two different regimes. For σ>sigmac\sigma > sigma_c the lumpy pattern emerges directly from the dominant eigenvector of the competition matrix because its corresponding eigenvalue becomes negative. For σ</sigmac\sigma </- sigma_c the lumpy pattern disappears. Furthermore, this clumping transition exhibits critical slowing down as σ\sigma is approached from above. We also find that the number of lumps of species vs. σ\sigma displays a stair-step structure. The positions of these steps are distributed according to a power-law. It is thus straightforward to predict the number of groups that can be packed along a niche axis and it coincides with field measurements for a wide range of the model parameters.Comment: 16 pages, 7 figures; http://iopscience.iop.org/1742-5468/2010/05/P0500

    Longitudinal alterations in motivational salience processing in ultra-high-risk subjects for psychosis

    Get PDF
    Impairments in the attribution of salience are thought to be fundamental to the development of psychotic symptoms and the onset of psychotic disorders. The aim of the present study was to explore longitudinal alterations in salience processing in ultra-high-risk subjects for psychosis.; A total of 23 ultra-high-risk subjects and 13 healthy controls underwent functional magnetic resonance imaging at two time points (mean interval of 17 months) while performing the Salience Attribution Test to assess neural responses to task-relevant (adaptive salience) and task-irrelevant (aberrant salience) stimulus features.; At presentation, high-risk subjects were less likely than controls to attribute salience to relevant features, and more likely to attribute salience to irrelevant stimulus features. These behavioural differences were no longer evident at follow-up. When attributing salience to relevant cue features, ultra-high-risk subjects showed less activation than controls in the ventral striatum at both baseline and follow-up. Within the high-risk sample, amelioration of abnormal beliefs over the follow-up period was correlated with an increase in right ventral striatum activation during the attribution of salience to relevant cue features.; These findings confirm that salience processing is perturbed in ultra-high-risk subjects for psychosis, that this is linked to alterations in ventral striatum function, and that clinical outcomes are related to longitudinal changes in ventral striatum function during salience processing

    Minimum convex hull mass estimations of complete mounted skeletons

    Get PDF
    Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg
    corecore