218 research outputs found

    Autonomic Computing Correlation for Fault Management System Evolution

    Get PDF
    This paper discusses the emerging area of autonomic computing and its implications for the evolution of faultmanagement systems. Particular emphasis is placed on the concept of event correlation and its role in system self-management. A new correlation analysis tool to assist with the development, management and maintenance of correlation rules and beliefs is described

    Quantum optical signal processing in diamond

    Full text link
    Controlling the properties of single photons is essential for a wide array of emerging optical quantum technologies spanning quantum sensing, quantum computing, and quantum communications. Essential components for these technologies include single photon sources, quantum memories, waveguides, and detectors. The ideal spectral operating parameters (wavelength and bandwidth) of these components are rarely similar; thus, frequency conversion and spectral control are key enabling steps for component hybridization. Here we perform signal processing of single photons by coherently manipulating their spectra via a modified quantum memory. We store 723.5 nm photons, with 4.1 nm bandwidth, in a room-temperature diamond crystal; upon retrieval we demonstrate centre frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 to 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, to be an integrated platform for photon storage and spectral conversion.Comment: 6 pages, 4 figure

    Storage of polarization-entangled THz-bandwidth photons in a diamond quantum memory

    Full text link
    Bulk diamond phonons have been shown to be a versatile platform for the generation, storage, and manipulation of high-bandwidth quantum states of light. Here we demonstrate a diamond quantum memory that stores, and releases on demand, an arbitrarily polarized ∼\sim250 fs duration photonic qubit. The single-mode nature of the memory is overcome by mapping the two degrees of polarization of the qubit, via Raman transitions, onto two spatially distinct optical phonon modes located in the same diamond crystal. The two modes are coherently recombined upon retrieval and quantum process tomography confirms that the memory faithfully reproduces the input state with average fidelity 0.784±0.0040.784\pm0.004 with a total memory efficiency of (0.76±0.03)%(0.76\pm0.03)\%. In an additional demonstration, one photon of a polarization-entangled pair is stored in the memory. We report that entanglement persists in the retrieved state for up to 1.3 ps of storage time. These results demonstrate that the diamond phonon platform can be used in concert with polarization qubits, a key requirement for polarization-encoded photonic processing

    Model-Based Self-Managing Systems Engineering

    Get PDF

    Storage and retrieval of ultrafast single photons using a room-temperature diamond quantum memory

    Full text link
    We report the storage and retrieval of single photons, via a quantum memory, in the optical phonons of room-temperature bulk diamond. The THz-bandwidth heralded photons are generated by spontaneous parametric downconversion and mapped to phonons via a Raman transition, stored for a variable delay, and released on demand. The second-order correlation of the memory output is g(2)(0)=0.65±0.07g^{(2)}(0) = 0.65 \pm 0.07, demonstrating preservation of non-classical photon statistics throughout storage and retrieval. The memory is low-noise, high-speed and broadly tunable; it therefore promises to be a versatile light-matter interface for local quantum processing applications.Comment: 6 pages, 4 figure

    Biodegradation of high-concentration isopropanol by a solvent-tolerant thermophile, Bacillus pallidus

    Get PDF
    The aerobic biodegradation of high-concentration, to 24 g l –1 , 2-propanol (IPA) by a thermophilic isolate ST3, identified as Bacillus pallidus , was successfully carried out for the first time. This solvent-tolerant B. pallidus utilized IPA as the sole carbon source within a minimal salts medium. Cultivation was carried out in 100-ml shake flasks at 60°C and compared with cultivation within a 1-l stirred tank reactor (STR). Specific growth rate () was about 0.2 h–1 for both systems, with a maximum cell density of 2.4 x 10 8 cells ml–1 obtained with STR cultivation. During exponential growth and stationary phase, IPA biodegradation rates were found to be 0.14 and 0.02 g l –1h–1, respectively, in shake-flask experiments, whereas corresponding values of 0.09 and 0.018 g l –1h–1 were achievable in the STR. Generation of acetone, the major intermediate in aerobic IPA biodegradation, was also monitored as an indicator of microbial IPA utilization. Acetone levels reached a maximum of 2.2–2.3 g l–1 after 72 and 58 h for 100-ml and 1-l systems, respectively. Both IPA and acetone were completely removed from the medium following 160 and 175 h, respectively, during STR growth, although this was not demonstrated within shake-flask reactions. Growth of B. pallidus on acetone or IPA alone demonstrated that the maximum growth rate () obtainable was 0.247 h–1 at 4 g l–1 acetone and 0.202 h–1 at 8 g l–1 IPA within shake-flask cultivation. These results indicate the potential of the solvent-tolerant thermophile B. pallidus ST3 in the bioremediation of hot solvent-containing industrial waste streams

    Towards a systemic approach to autonomic systems engineering

    Get PDF

    Nest site selection by sea turtles

    Full text link
    The distribution of 38 nests of loggerhead turtles (Caretta caretta) on beaches on Sanibel and Captiva islands, south-western Florida (26°26\u27N 82°16\u27W), and of 70 first digging attempts by green turtles (Chelonia mydas) on Ascension Island (7°57\u27S 14°22\u27W), was quantified. For loggerhead turtles on Sanibel and Captiva, nests were clumped close to the border between the open sand and the supra-littoral vegetation that backed the beaches. This spatial pattern of nests was closely reproduced by assuming simply that turtles crawled a random distance above the most recent high water line prior to digging. In contrast, green turtles on Ascension Island clumped their first digging attempts on the uneven beach above the springs high water line, crawling up to 80 m to reach this beach zone
    • …
    corecore